比较两个时间序列在图形上是否相似,可以通过以下方法:
需要注意的是,图形上的相似性并不能完全代表两个时间序列之间的相似性,因为同一个图形可以对应着不同的时间序列。因此,在进行时间序列的比较时,需要综合考虑多个方面的信息。
开始之前,你要确保Python和pip已经成功安装在电脑上,如果没有,可以访问这篇文章:超详细Python安装指南 进行安装。
(可选1) 如果你用Python的目的是数据分析,可以直接安装Anaconda:Python数据分析与挖掘好帮手—Anaconda,它内置了Python和pip.
(可选2) 此外,推荐大家用VSCode编辑器,它有许多的优点:Python 编程的最好搭档—VSCode 详细指南。
请选择以下任一种方式输入命令安装依赖:1. Windows 环境 打开 Cmd (开始-运行-CMD)。2. MacOS 环境 打开 Terminal (command+空格输入Terminal)。3. 如果你用的是 VSCode编辑器 或 Pycharm,可以直接使用界面下方的Terminal.
pip install matplotlib
pip install numpy
import matplotlib.pyplot as plt
# 生成时间序列数据
x = [1, 2, 3, 4, 5]
y1 = [10, 15, 13, 17, 20]
y2 = [8, 12, 14, 18, 22]
# 绘制两个时间序列的折线图
plt.plot(x, y1, label='y1')
plt.plot(x, y2, label='y2')
# 设置图形属性
plt.xlabel('Time')
plt.ylabel('Value')
plt.title('Comparison of two time series')
plt.legend()
# 显示图形
plt.show()
import numpy as np
# 生成时间序列数据
x = [1, 2, 3, 4, 5]
y1 = [10, 15, 13, 17, 20]
y2 = [8, 12, 14, 18, 22]
# 计算相关系数
corr = np.corrcoef(y1, y2)[0, 1]
# 输出结果
print('Correlation coefficient:', corr)
import numpy as np
# 生成时间序列数据
x = [1, 2, 3, 4, 5]
y1 = [10, 15, 13, 17, 20]
y2 = [8, 12, 14, 18, 22]
# 动态时间规整算法
def dtw_distance(ts_a, ts_b, d=lambda x, y: abs(x - y)):
DTW = {}
# 初始化边界条件
for i in range(len(ts_a)):
DTW[(i, -1)] = float('inf')
for i in range(len(ts_b)):
DTW[(-1, i)] = float('inf')
DTW[(-1, -1)] = 0
# 计算DTW矩阵
for i in range(len(ts_a)):
for j in range(len(ts_b)):
cost = d(ts_a[i], ts_b[j])
DTW[(i, j)] = cost + min(DTW[(i-1, j)], DTW[(i, j-1)], DTW[(i-1, j-1)])
# 返回DTW距离
return DTW[len(ts_a)-1, len(ts_b)-1]
# 计算两个时间序列之间的DTW距离
dtw_dist = dtw_distance(y1, y2)
# 输出结果
print('DTW distance:', dtw_dist)
本文标题:Python 比较两个时间序列在图形上是否相似
网站地址:http://www.shufengxianlan.com/qtweb/news0/345350.html
网站建设、网络推广公司-创新互联,是专注品牌与效果的网站制作,网络营销seo公司;服务项目有等
声明:本网站发布的内容(图片、视频和文字)以用户投稿、用户转载内容为主,如果涉及侵权请尽快告知,我们将会在第一时间删除。文章观点不代表本网站立场,如需处理请联系客服。电话:028-86922220;邮箱:631063699@qq.com。内容未经允许不得转载,或转载时需注明来源: 创新互联