Redis实战开发必知必会(redis相关的书籍)

Redis实战开发必知必会

Redis是一个开源的高性能NoSQL数据库,常用于缓存、消息队列、会话管理等多个领域。本文将介绍Redis实战开发中的必知必会内容,并示范如何通过代码实现。

一、基础数据类型

1.字符串类型(String)

Redis的字符串类型可以保存任意类型的数据,包括二进制数据。字符串类型的操作包括set、get、incr等。示例代码如下:

“`python

import redis

# 连接Redis

r = redis.StrictRedis(host=’localhost’, port=6379, db=0)

# 设置字符串类型

r.set(‘name’, ‘Alice’)

# 获取字符串类型

print(r.get(‘name’).decode())

# 自增1

r.incr(‘count’)

# 自增指定的整数

r.incrby(‘count’, 5)


2.哈希类型(Hash)

Redis的哈希类型是一个键值对集合,其中键和值都是字符串类型。哈希类型的操作包括hset、hget、hmget等。示例代码如下:

```python
import redis
# 连接Redis
r = redis.StrictRedis(host='localhost', port=6379, db=0)
# 设置哈希类型
r.hset('person', 'name', 'Alice')
r.hset('person', 'age', 20)
r.hset('person', 'gender', 'female')
# 获取哈希类型的值
print(r.hget('person', 'name').decode())
# 获取哈希类型的所有键值对
print(r.hgetall('person'))

3.列表类型(List)

Redis的列表类型是一个字符串元素的集合,按照插入顺序排序。列表类型的操作包括lpush、lpop、lrange等。示例代码如下:

“`python

import redis

# 连接Redis

r = redis.StrictRedis(host=’localhost’, port=6379, db=0)

# 设置列表类型

r.lpush(‘numbers’, 1)

r.lpush(‘numbers’, 2)

r.lpush(‘numbers’, 3)

# 获取列表类型的值

print(r.lrange(‘numbers’, 0, -1))


4.集合类型(Set)

Redis的集合类型是一个不重复字符串元素的集合。集合类型的操作包括sadd、srem、smembers等。示例代码如下:

```python
import redis
# 连接Redis
r = redis.StrictRedis(host='localhost', port=6379, db=0)
# 设置集合类型
r.sadd('fruits', 'apple')
r.sadd('fruits', 'banana')
r.sadd('fruits', 'banana')
# 获取集合类型的值
print(r.smembers('fruits'))

5.有序集合类型(Sorted set)

Redis的有序集合类型是一个不重复字符串元素的集合,并且每个元素都有一个分数值,可以用于实现排名、排行榜等需求。有序集合类型的操作包括zadd、zrange等。示例代码如下:

“`python

import redis

# 连接Redis

r = redis.StrictRedis(host=’localhost’, port=6379, db=0)

# 设置有序集合类型

r.zadd(‘scores’, {‘Alice’: 90, ‘Bob’: 80, ‘Charlie’: 70})

# 获取有序集合类型的值

print(r.zrange(‘scores’, 0, -1, withscores=True))


二、高级数据结构

1.位图(BitMap)

Redis的位图结构用一串二进制位来表示某种状态,可以用来实现在线状态、签到等应用。位图的操作包括setbit、getbit等。示例代码如下:

```python
import redis
# 连接Redis
r = redis.StrictRedis(host='localhost', port=6379, db=0)
# 设置位图
r.setbit('online', 100, 1)
r.setbit('online', 101, 1)

# 获取位图
for i in range(100, 105):
print(r.getbit('online', i))

2.布隆过滤器(Bloom Filter)

Redis的布隆过滤器是一个空间效率高、误判率低的数据结构,可以用来判断某个元素是否存在于某个集合中。布隆过滤器的操作包括bf.add、bf.exists等。示例代码如下:

“`python

import redis

# 连接Redis

r = redis.StrictRedis(host=’localhost’, port=6379, db=0)

# 创建布隆过滤器

r.execute_command(‘bf.reserve’, ‘myfilter’, ‘0.01’, ‘1000’)

# 添加元素到布隆过滤器

r.execute_command(‘bf.add’, ‘myfilter’, ‘element1’)

# 判断元素是否存在于布隆过滤器中

print(r.execute_command(‘bf.exists’, ‘myfilter’, ‘element1’))

print(r.execute_command(‘bf.exists’, ‘myfilter’, ‘element2’))


3.地理空间索引(Geo)

Redis的地理空间索引结构可以用来实现位置服务、附近的人等需求。地理空间索引的操作包括geoadd、georadius等。示例代码如下:

```python
import redis
# 连接Redis
r = redis.StrictRedis(host='localhost', port=6379, db=0)
# 设置地理空间索引
r.geoadd('locations', 116.403961, 39.915168, 'Tiananmen')
r.geoadd('locations', 116.396073, 39.921803, 'Wangfujing')
r.geoadd('locations', 116.407395, 39.907588, 'Qianmen')
# 获取附近的地理位置
print(r.georadius('locations', 116.404671, 39.907478, 5, unit='km'))

三、并发控制

1.分布式锁

Redis的分布式锁结构可以用来实现分布式环境下的竞争资源访问控制。分布式锁的实现包括setnx、expire等。示例代码如下:

“`python

import redis

import time

import threading

# 连接Redis

r = redis.StrictRedis(host=’localhost’, port=6379, db=0)

# 获取分布式锁

def acquire_lock(lockname, acquire_timeout=10):

locking = threading.current_thread().name

end = time.time() + acquire_timeout

while time.time()

if r.setnx(lockname, locking):

r.expire(lockname, acquire_timeout)

print(f'{locking} acquired the lock {lockname}’)

return locking

time.sleep(0.1)

return False

# 释放分布式锁

def release_lock(lockname, ident):

if r.get(lockname).decode() == ident:

r.delete(lockname)

print(f'{ident} released the lock {lockname}’)

return True

return False

# 线程A尝试获取锁

def try_acquire_lock_A():

acquire_lock(‘mylock’)

# 线程B尝试获取锁

def try_acquire_lock_B():

acquire_lock(‘mylock’)

# 线程A和B同时尝试获取锁,只有一个可以成功

threads = []

threads.append(threading.Thread(target=try_acquire_lock_A))

threads.append(threading.Thread(target=try_acquire_lock_B))

for t in threads:

t.start()

for t in threads:

t.join()


2.分布式队列

Redis的分布式队列结构可以用来实现分布式环境下的任务队列,多个消费者可以同时从队列中取出任务并进行处理。分布式队列的实现包括lpush、rpop等。示例代码如下:

```python
import redis
import time
import threading
# 连接Redis
r = redis.StrictRedis(host='localhost', port=6379, db=0)
# 生产者将任务加入队列
def produce(task):
r.lpush('myqueue', task)
print(f'produce task {task}')
# 消费者从队列中取出任务并进行处理
def consume():
while True:
task = r.rpop('myqueue')
if task:
print(f'consume task {task.decode()}')
time.sleep(1)

time.sleep(0.1)

# 启动2个消费者线程
threads = []
for i in range(2):
t =

香港服务器选创新互联,2H2G首月10元开通。
创新互联(www.cdcxhl.com)互联网服务提供商,拥有超过10年的服务器租用、服务器托管、云服务器、虚拟主机、网站系统开发经验。专业提供云主机、虚拟主机、域名注册、VPS主机、云服务器、香港云服务器、免备案服务器等。

网站栏目:Redis实战开发必知必会(redis相关的书籍)
地址分享:http://www.shufengxianlan.com/qtweb/news0/420050.html

网站建设、网络推广公司-创新互联,是专注品牌与效果的网站制作,网络营销seo公司;服务项目有等

广告

声明:本网站发布的内容(图片、视频和文字)以用户投稿、用户转载内容为主,如果涉及侵权请尽快告知,我们将会在第一时间删除。文章观点不代表本网站立场,如需处理请联系客服。电话:028-86922220;邮箱:631063699@qq.com。内容未经允许不得转载,或转载时需注明来源: 创新互联