Redis集群数据拆解让数据分发更轻松(redis集群数据拆解)

随着业务的发展,数据量不断增大,这使得单机部署Redis带来了一定的挑战,给系统稳定性,可用性带来了威胁。为了解决这一问题,Redis在3.x重点支持了集群,以实现故障自动发现、故障转移、节点自动重组,从而把读写的压力分摊到多台服务器上,解决了单机性能瓶颈的问题。

创新互联公司专注于中大型企业的网站建设、成都网站建设和网站改版、网站营销服务,追求商业策划与数据分析、创意艺术与技术开发的融合,累计客户上千多家,服务满意度达97%。帮助广大客户顺利对接上互联网浪潮,准确优选出符合自己需要的互联网运用,我们将一直专注高端网站设计和互联网程序开发,在前进的路上,与客户一起成长!

那么,在数据量过大的Redis集群环境下,如何让数据分发更轻松呢?其实,可以通过redis集群数据拆解来实现数据分发优势。

Redis集群数据拆解一般使用CRC16或FNV1等哈希算法计算,将key虚拟分割成多个Slot,再把slot映射到Redis集群中各个节点。这样做的好处是,无论key的数量多少,每个Redis节点的slot的数量都是相同的,能够很好的预算负载,保证集群的稳定性。当业务系统需要增补集群新节点时,只需要重新计算slot映射即可,不需要迁移key,非常灵活。

通过Redis集群数据拆解,可以更轻松的实现数据分发。下面是一段代码,可以使用CRC16TreeMap部署Redis集群:

“`java

//定义Redis节点

CRC16TreeMap nodeList = new CRC16TreeMap();

nodeList.put(“192.168.1.1”,16384);

nodeList.put(“192.168.1.2”,40960);

nodeList.put(“192.168.1.3”,45056);

nodeList.put(“192.168.1.4”,61440);

// 计算Redis节点的slot并分配

for (int i=0;i

Integer nodeIndex=nodeList.getNodeIndexbyKeyHash(Integer.valueOf(i).toString());

String nodeIP = nodeList.get(nodeIndex);

System.out.println(“slot “+i+” map to “+nodeIP);

}


通过以上代码,可非常方便的计算出slot映射到那个redis节点。这样,就可以轻松使用Redis集群数据拆解,实现轻松的数据分发。

成都服务器托管选创新互联,先上架开通再付费。
创新互联(www.cdcxhl.com)专业-网站建设,软件开发老牌服务商!微信小程序开发,APP开发,网站制作,网站营销推广服务众多企业。电话:028-86922220

网页标题:Redis集群数据拆解让数据分发更轻松(redis集群数据拆解)
标题链接:http://www.shufengxianlan.com/qtweb/news1/254651.html

网站建设、网络推广公司-创新互联,是专注品牌与效果的网站制作,网络营销seo公司;服务项目有等

广告

声明:本网站发布的内容(图片、视频和文字)以用户投稿、用户转载内容为主,如果涉及侵权请尽快告知,我们将会在第一时间删除。文章观点不代表本网站立场,如需处理请联系客服。电话:028-86922220;邮箱:631063699@qq.com。内容未经允许不得转载,或转载时需注明来源: 创新互联