本文转载自微信公众号「小姐姐味道」,作者小姐姐养的狗 。转载本文请联系小姐姐味道公众号。
很多同学喜欢使用lambda表达式,它允许你定义短小精悍的函数,体现你高超的编码水平。当然,这个功能在某些以代码行数来衡量工作量的公司来说,就比较吃亏一些。
比如下面的代码片段,让人阅读的时候就像是读诗一样。但是一旦用不好,也是会要命的。
- List
transactionsIds = - widgets.stream()
- .filter(b -> b.getColor() == RED)
- .sorted((x,y) -> x.getWeight() - y.getWeight())
- .mapToInt(Widget::getWeight)
- .sum();
这段代码有一个关键的函数,那就是stream。通过它,可以将一个普通的list,转化为流,然后就可以使用类似于管道的方式对list进行操作。总之,用过的都说好。
对这些函数还不是太熟悉?可以参考:《到处是map、flatMap,啥意思?》
问题来了
假如我们把stream换成parallelStream,会发生什么情况?
根据字面上的意思,流会从串行 变成并行。
既然是并行,那用屁股想一想,就知道这里面肯定会有线程安全问题。不过我们这里讨论的并不是要你使用线程安全的集合,这个话题太低级。现阶段,知道在线程不安全的环境中使用线程安全的集合,已经是一个基本的技能。
这次踩坑的地方,是并行流的性能问题。
我们用代码来说话。
下面的代码,开启了8个线程,这8个线程都在使用并行流进行数据计算。在执行的逻辑中,我们让每个任务都sleep 1秒钟,这样就能够模拟一些I/O请求的耗时等待。
使用stream,程序会在30秒后返回,但我们期望程序能够在1秒多返回,因为它是并行流,得对得起这个称号。
测试发现,我们等了好久,任务才执行完毕。
- static void paralleTest() {
- List
numbers = Arrays.asList( - 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
- 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
- 20, 21, 22, 23, 24, 25, 26, 27, 28, 29
- );
- final long begin = System.currentTimeMillis();
- numbers.parallelStream().map(k -> {
- try {
- Thread.sleep(1000);
- System.out.println((System.currentTimeMillis() - begin) + "ms => " + k + " \t" + Thread.currentThread());
- } catch (InterruptedException e) {
- e.printStackTrace();
- }
- return k;
- }).collect(Collectors.toList());
- }
- public static void main(String[] args) {
- // System.setProperty("java.util.concurrent.ForkJoinPool.common.parallelism", "20");
- new Thread(() -> paralleTest()).start();
- new Thread(() -> paralleTest()).start();
- new Thread(() -> paralleTest()).start();
- new Thread(() -> paralleTest()).start();
- new Thread(() -> paralleTest()).start();
- new Thread(() -> paralleTest()).start();
- new Thread(() -> paralleTest()).start();
- new Thread(() -> paralleTest()).start();
- }
坑
实际上,在不同的机器上执行,这段代码花费的时间都不一样。
既然是并行,那肯定得有个并行度。太低了,体现不到并行的能能力;太大了,又浪费了上下文切换的时间。我是很沮丧的发现,很多高级研发,将线程池的各种参数背的滚瓜烂熟,各种调优,竟然敢睁一只眼闭一只眼的在I/O密集型业务中用上parallelStream。
要了解这个并行度,我们需要查看具体的构造方法。在ForkJoinPool类中找到这样的代码。
- try { // ignore exceptions in accessing/parsing properties
- String pp = System.getProperty
- ("java.util.concurrent.ForkJoinPool.common.parallelism");
- if (pp != null)
- parallelism = Integer.parseInt(pp);
- fac = (ForkJoinWorkerThreadFactory) newInstanceFromSystemProperty(
- "java.util.concurrent.ForkJoinPool.common.threadFactory");
- handler = (UncaughtExceptionHandler) newInstanceFromSystemProperty(
- "java.util.concurrent.ForkJoinPool.common.exceptionHandler");
- } catch (Exception ignore) {
- }
- if (fac == null) {
- if (System.getSecurityManager() == null)
- fac = defaultForkJoinWorkerThreadFactory;
- else // use security-managed default
- fac = new InnocuousForkJoinWorkerThreadFactory();
- }
- if (parallelism < 0 && // default 1 less than #cores
- (parallelism = Runtime.getRuntime().availableProcessors() - 1) <= 0)
- parallelism = 1;
- if (parallelism > MAX_CAP)
- parallelism = MAX_CAP;
可以看到,并行度到底是多少,是由下面的参数来控制的。如果无法获取这个参数,则默认使用 CPU个数-1 的并行度。
可以看到,这个函数是为了计算密集型业务去设计的。如果你喂给它一大堆任务,它就会由并行执行退变成类似于串行的效果。
- -Djava.util.concurrent.ForkJoinPool.common.parallelism=N
即使你使用-Djava.util.concurrent.ForkJoinPool.common.parallelism=N设置了一个初始值大小,它依然有问题。
因为,parallelism这个变量是final的,一旦设定,不允许修改。也就是说,上面的参数只会生效一次。
张三可能使用下面的代码,设置了并行度大小为20。
- System.setProperty("java.util.concurrent.ForkJoinPool.common.parallelism", "20");
李四可能用同样的方式,设置了这个值为30。那实际在项目中用的是哪个值,那就得问JVM是怎么加载的类信息了。
这种方式并不太非常靠谱。
一种解决方式
我们可以通过提供外置的forkjoinpool,也就是改变提交方式,来实现不同类型的任务分离。
代码如下所示,通过显式的代码提交,即可实现任务分离。
- ForkJoinPool pool = new ForkJoinPool(30);
- final long begin = System.currentTimeMillis();
- try {
- pool.submit(() ->
- numbers.parallelStream().map(k -> {
- try {
- Thread.sleep(1000);
- System.out.println((System.currentTimeMillis() - begin) + "ms => " + k + " \t" + Thread.currentThread());
- } catch (InterruptedException e) {
- e.printStackTrace();
- }
- return k;
- }).collect(Collectors.toList())).get();
- } catch (InterruptedException e) {
- e.printStackTrace();
- } catch (ExecutionException e) {
- e.printStackTrace();
- }
这样,不同的场景,就可以拥有不同的并行度。这种方式和CountDownLatch有异曲同工之妙,我们需要手动管理资源。
使用了这种方式,代码量增加,已经和优雅关系不大了,不仅不优雅,而且丑的要命。白天鹅变成了丑小鸭,你还会爱它么?
作者简介:小姐姐味道 (xjjdog),一个不允许程序员走弯路的公众号。聚焦基础架构和Linux。十年架构,日百亿流量,与你探讨高并发世界,给你不一样的味道。我的个人微信xjjdog0,欢迎添加好友,进一步交流。
网页题目:ParallelStream的坑,不踩不知道,一踩吓一跳
网站地址:http://www.shufengxianlan.com/qtweb/news1/424801.html
网站建设、网络推广公司-创新互联,是专注品牌与效果的网站制作,网络营销seo公司;服务项目有等
声明:本网站发布的内容(图片、视频和文字)以用户投稿、用户转载内容为主,如果涉及侵权请尽快告知,我们将会在第一时间删除。文章观点不代表本网站立场,如需处理请联系客服。电话:028-86922220;邮箱:631063699@qq.com。内容未经允许不得转载,或转载时需注明来源: 创新互联