Redis缓存穿透问题解决方案
创新互联建站从2013年开始,先为长沙县等服务建站,长沙县等地企业,进行企业商务咨询服务。为长沙县企业网站制作PC+手机+微官网三网同步一站式服务解决您的所有建站问题。
Redis作为一款高性能的内存数据库,广泛用于缓存、会话管理等场景。然而,Redis也存在着缓存穿透的问题。缓存穿透是指缓存层无法命中请求,导致请求直接落到了数据库层,引起数据库层的压力增加。本文将详细介绍Redis缓存穿透的原因,并提供一种解决方案,帮助读者更好地理解和解决这个问题。
缓存穿透的原因
缓存穿透问题通常发生在查询一个不存在的数据时,很多情况下查询的key不存在于缓存中,同时也不存在于数据库中。这时候就会出现缓存的查找失败,导致大量的请求直接落到了数据库层,引起数据库层的压力增加。例如,以下代码展示了一个查询用户的示例:
public user getUserById(String userid) {
User user = redis.get(userId);
if (user == null) {
user = db.getUser(userId);
if (user != null) {
redis.set(userId, user);
}
}
return user;
}
在该示例中,首先从Redis缓存中查找用户信息,如果没有找到,再从数据库中获取用户信息,并将用户信息缓存到Redis。然而,如果查询的用户信息不存在于缓存和数据库中,就会导致缓存层无法命中请求,从而形成了缓存穿透问题。
解决方案
为了解决Redis缓存穿透问题,我们需要有客观的数据来验证。我们可以使用JMeter工具构造一个业务并发请求场景,测试Redis缓存的命中率和服务器的性能指标。例如,以下代码展示了如何使用JMeter测试Redis缓存:
public class RedisLoadTest extends TestCase {
private static String redisHost = "localhost";
private static int redisPort = 6379;
private static int requestCount = 10000;
private static int threadCount = 500;
public void testRedisLoad() {
JedisPool pool = new JedisPool(new JedisPoolConfig(), redisHost, redisPort);
ExecutorService executorService = Executors.newFixedThreadPool(threadCount);
for (int i = 0; i
executorService.submit(new Runnable() {
@Override
public void run() {
try (Jedis jedis = pool.getResource()) {
for (int i = 0; i
String key = UUID.randomUUID().toString();
String value = jedis.get(key);
if (value == null) {
// 数据库查询操作
value = "value-" + key;
jedis.setex(key, 10, value);
}
}
}
}
});
}
executorService.shutdown();
try {
executorService.awtTermination(Long.MAX_VALUE, TimeUnit.MILLISECONDS);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
该示例使用JedisPool连接池和ExecutorService线程池,模拟并发地查询Redis缓存,其中,每个线程查询10000/500=20次Redis缓存,如果Redis缓存不存在该key,则会执行数据库查询操作并将查询结果缓存到Redis中。
为了更好地解决Redis缓存穿透问题,我们还可以采用以下三种方案:
1. 缓存空值
如果查询的数据不存在于数据库中,可以将一个相应的空值存储到缓存中。这种方案可以避免缓存穿透,但是会导致缓存空间的浪费。
public User getUserById(String userId) {
User user = redis.get(userId);
if (user == null) {
user = db.getUser(userId);
redis.setex(userId, 10, user);
}
return user;
}
2. 布隆过滤器
布隆过滤器是一种高效的数据结构,能够存储和查询大量数据。它可以用于缓存层和数据库层之间的数据过滤,避免访问不存在的数据。在查询前,我们可以使用布隆过滤器来过滤出唯一存在于数据库中的数据。
public User getUserById(String userId) {
if (!bloomFilter.contns(userId)) {
return null;
}
User user = redis.get(userId);
if (user == null) {
user = db.getUser(userId);
if (user != null) {
redis.setex(userId, 10, user);
}
}
return user;
}
3. 缓存穿透过滤器
缓存穿透过滤器也是一种常用的方案,可以用于筛选出有可能存在于数据库中的数据。例如,我们可以使用一个定时任务,定时地检查缓存中的key,如果有不存在于缓存中但可能存在于数据库中的key,则将其添加到缓存穿透过滤器中,避免大量请求直接访问数据库。
public void init() {
// 10分钟检查一次过滤器
Executors.newSingleThreadScheduledExecutor().scheduleAtFixedRate(() -> {
Set keys = redis.keys("*");
for (String key : keys) {
if (bloomFilter.contns(key)) {
continue;
}
if (db.exists(key)) {
bloomFilter.add(key);
} else {
// 添加一个空值,用于避免缓存穿透
redis.setex(key, 10, "");
}
}
}, 0, 10, TimeUnit.MINUTES);
}
总结
本文介绍了Redis缓存穿透问题的原因,并提供了一些解决方案,帮助读者更好地理解和解决这个问题。在实际应用中,我们需要根据需求选择最合适的方案,以达到缓存穿透的最优解。
成都网站营销推广找创新互联,全国分站站群网站搭建更好做SEO营销。
创新互联(www.cdcxhl.com)四川成都IDC基础服务商,价格厚道。提供成都服务器托管租用、绵阳服务器租用托管、重庆服务器托管租用、贵阳服务器机房服务器托管租用。
分享标题:解决Redis缓存穿透问题(redis缓存穿透缓存)
URL标题:http://www.shufengxianlan.com/qtweb/news12/157312.html
网站建设、网络推广公司-创新互联,是专注品牌与效果的网站制作,网络营销seo公司;服务项目有等
声明:本网站发布的内容(图片、视频和文字)以用户投稿、用户转载内容为主,如果涉及侵权请尽快告知,我们将会在第一时间删除。文章观点不代表本网站立场,如需处理请联系客服。电话:028-86922220;邮箱:631063699@qq.com。内容未经允许不得转载,或转载时需注明来源: 创新互联