之前跟大家说过很多工具,然而对于数据可视化这块说的是甚少甚少,一直碍于没有灵感,于是今天小编在搜索一些内容时候,突然看到了一个好玩的工具,非常适合作为本期的讲解内容,大家一定好奇这是什么吧,直接告诉大家,是关于数据可视化里的dash工具,小伙伴们有没有了解过的呢?如果没有听过,就一起来看下吧,当做自己知识库的累积。
创新互联服务项目包括四平网站建设、四平网站制作、四平网页制作以及四平网络营销策划等。多年来,我们专注于互联网行业,利用自身积累的技术优势、行业经验、深度合作伙伴关系等,向广大中小型企业、政府机构等提供互联网行业的解决方案,四平网站推广取得了明显的社会效益与经济效益。目前,我们服务的客户以成都为中心已经辐射到四平省份的部分城市,未来相信会继续扩大服务区域并继续获得客户的支持与信任!
Dash
是建立数据分析性应用的 Python 框架,使用它不需要直接使用 JavaScript。基于 Plotly.js、React 和 Flask,
Dash
可以直接结合你的数据分析代码,构建酷炫的 UI Web 应用。
如上是只有 43 行 Python 代码构建的应用,通过 Pandas 加载 Google Finance 的数据,并使用 Dash 进行可视化。
代码演示:
import dash from dash.dependencies import Input, Output import dash_core_components as dcc import dash_html_components as html from pandas_datareader import data as web from datetime import datetime as dt app = dash.Dash('Hello World') app.layout = html.Div([ dcc.Dropdown( id='my-dropdown', options=[ {'label': 'Coke', 'value': 'COKE'}, {'label': 'Tesla', 'value': 'TSLA'}, {'label': 'Apple', 'value': 'AAPL'} ], value='COKE' ), dcc.Graph(id='my-graph') ], style={'width': '500'}) @app.callback(Output('my-graph', 'figure'), [Input('my-dropdown', 'value')]) def update_graph(selected_dropdown_value): df = web.DataReader( selected_dropdown_value, 'google', dt(2017, 1, 1), dt.now() ) return { 'data': [{ 'x': df.index, 'y': df.Close }], 'layout': {'margin': {'l': 40, 'r': 0, 't': 20, 'b': 30}} } app.css.append_css({'external_url': 'https://codepen.io/chriddyp/pen/bWLwgP.css'}) if __name__ == '__main__': app.run_server()
呈现效果:
上面只给大家展示了很少一部分的代码,却给大家演示出来非常详细的内容,可见这个工具很好使用,大家可以结合自己现在所用的工具,对比看下选择使用哈~
文章题目:创新互联Python教程:Python数据可视化中dash怎么用?
文章URL:http://www.shufengxianlan.com/qtweb/news14/224714.html
网站建设、网络推广公司-创新互联,是专注品牌与效果的网站制作,网络营销seo公司;服务项目有等
声明:本网站发布的内容(图片、视频和文字)以用户投稿、用户转载内容为主,如果涉及侵权请尽快告知,我们将会在第一时间删除。文章观点不代表本网站立场,如需处理请联系客服。电话:028-86922220;邮箱:631063699@qq.com。内容未经允许不得转载,或转载时需注明来源: 创新互联