R 是一种编程语言和分析工具,由 Ross Ihaka 和 Robert Gentleman 开发,并于 1993 年首次推出。同时,它也是免费的开源软件,拥有丰富的 统计和图形化技术库。
成都创新互联公司是一家网站设计公司,集创意、互联网应用、软件技术为一体的创意网站建设服务商,主营产品:成都响应式网站建设、品牌网站设计、成都全网营销推广。我们专注企业品牌在网站中的整体树立,网络互动的体验,以及在手机等移动端的优质呈现。网站设计制作、成都网站设计、移动互联产品、网络运营、VI设计、云产品.运维为核心业务。为用户提供一站式解决方案,我们深知市场的竞争激烈,认真对待每位客户,为客户提供赏析悦目的作品,网站的价值服务。
R 是 分析师、统计学家 和 研究人员 用得最多的工具之一,用于 检索、清理、分析、可视化 和 呈现数据,很多行业如 IT、银行、医疗、金融都使用 R。
统计计算:在统计学家中,R 是使用最广泛的编程语言。它有助于统计学家进行操作、收集、清理和分析。它还拥有制图功能,并从任何记录中产生有趣的视觉效果。
机器学习:它包括了一些基本机器学习任务的库,比如线性和非线性回归、决策树等等。可以用 R 来创建金融、零售、营销和保健领域的机器学习算法。
它是一种著名的计算机语言,同时也是一种广泛使用的、解释性的、面向对象的程序设计语言。由 Guido van Rossum 发明,并于 1991 年 2 月 20 日首次发布。它可以用于除网络开发之外的各种编程和软件开发,并且可用于创建一个完整的端到端流程。
分析:Python 在分析方面非常方便。举例来说,如果数据库包含上百万的行和列,那么从这些数据中提取信息就很困难和费时。这就是 Pandas、NumPy 和 SciPy 之类库的用武之地,它们可以快速完成工作。
提取:因为数据并非总是可用的,所以我们需要从网络获取。在这种情况下,可以使用库 Scrapy 和 Beautiful Soup 来从互联网上提取信息。
图形化表示:Seaborn 和 Matplotlib 库可以创建图表、饼图以及其他可视化的内容。
机器学习:它也有一个机器学习库。Scikit-Learn 和 PyBrain 是这些库的一种,它们通过一个接口提供了分类、回归和聚类等一些快速机器学习和统计建模工具。
既然我们已经从各种角度探讨了这两种编程语言,那么“哪种语言更适合数据科学?”这个问题就浮出水面了。
这两门语言最大的不同之处是它们处理情况的方式。这两种开源语言都收到了大量社区的支持,它们在不断地扩展其库和工具。
但是,你应该问自己的一个问题是,“你希望更关注于什么?机器学习还是统计学习?”
机器学习是人工智能的一门学科,而统计学习是统计学的一个分支。R 是一种统计语言,所以在统计学上很合适。 任何人只要有正式的统计学背景,都可以使用 R 进行编程,因为它很容易理解。而 Python 则是机器学习的最佳选择。 大型应用是机器学习的重点。Python 看起来是理想的选择,因为它的灵活性和可扩展性适合在生产环境中使用,尤其是当分析必须连接到网络应用程序时。
如下图所示,Python 或 R 是全球最流行的搜索词。从趋势上来看,Python 在过去十年里比 R 更流行。
根据 PayScale.com 的数据,美国 Python 开发的平均年薪为 79395 美元,而 R 程序的平均年薪为 68554 美元(截至本文发表时)。
Python 是一种 强大且适应性强的编程语言,可用于广泛的计算机科学应用。而 R 则是一种很流行的用于分析构建的语言。事实上,这两种语言在数据科学领域中都具有一定的优势和意义。
不过,你在选择具体用哪门语言之前,应该先问自己以下几个问题:
总而言之,学习这两种语言绝不会是个坏主意,因为“技多不压身”,只会让你作为一名计算机科学工程师受益。
分享题目:Python或R:哪种编程语言更适合数据科学?
网站URL:http://www.shufengxianlan.com/qtweb/news17/404567.html
网站建设、网络推广公司-创新互联,是专注品牌与效果的网站制作,网络营销seo公司;服务项目有等
声明:本网站发布的内容(图片、视频和文字)以用户投稿、用户转载内容为主,如果涉及侵权请尽快告知,我们将会在第一时间删除。文章观点不代表本网站立场,如需处理请联系客服。电话:028-86922220;邮箱:631063699@qq.com。内容未经允许不得转载,或转载时需注明来源: 创新互联