大家好,我是煎鱼。
自古应用程序均从 Hello World 开始,你我所写的 Go 语言亦然:
- import "fmt"
- func main() {
- fmt.Println("hello world.")
- }
这段程序的输出结果为 hello world.,就是这么的简单又直接。但这时候又不禁思考了起来,这个 hello world. 是怎么输出来,经历了什么过程。
真是非常的好奇,今天我们就一起来探一探 Go 程序的启动流程。其中涉及到 Go Runtime 的调度器启动,g0,m0 又是什么?
车门焊死,正式开始吸鱼之路。
查找入口
首先编译上文提到的示例程序:
- $ GOFLAGS="-ldflags=-compressdwarf=false" go build
在命令中指定了 GOFLAGS 参数,这是因为在 Go1.11 起,为了减少二进制文件大小,调试信息会被压缩。导致在 MacOS 上使用 gdb 时无法理解压缩的 DWARF 的含义是什么(而我恰恰就是用的 MacOS)。
因此需要在本次调试中将其关闭,再使用 gdb 进行调试,以此达到观察的目的:
- $ gdb awesomeProject
- (gdb) info files
- Symbols from "/Users/eddycjy/go-application/awesomeProject/awesomeProject".
- Local exec file:
- `/Users/eddycjy/go-application/awesomeProject/awesomeProject', file type mach-o-x86-64.
- Entry point: 0x1063c80
- 0x0000000001001000 - 0x00000000010a6aca is .text
- ...
- (gdb) b *0x1063c80
- Breakpoint 1 at 0x1063c80: file /usr/local/Cellar/go/1.15/libexec/src/runtime/rt0_darwin_amd64.s, line 8.
通过 Entry point 的调试,可看到真正的程序入口在 runtime 包中,不同的计算机架构指向不同。例如:
其最终指向了 rt0_darwin_amd64.s 文件,这个文件名称非常的直观:
Breakpoint 1 at 0x1063c80: file /usr/local/Cellar/go/1.15/libexec/src/runtime/rt0_darwin_amd64.s, line 8.
rt0 代表 runtime0 的缩写,指代运行时的创世,超级奶爸:
同时 Go 语言还支持更多的目标系统架构,例如:AMD64、AMR、MIPS、WASM 等:
源码目录
若有兴趣可到 src/runtime 目录下进一步查看,这里就不一一介绍了。
入口方法
在 rt0_linux_amd64.s 文件中,可发现 _rt0_amd64_darwin JMP 跳转到了 _rt0_amd64 方法:
- TEXT _rt0_amd64_darwin(SB),NOSPLIT,$-8
- JMP _rt0_amd64(SB)
- ...
紧接着又跳转到 runtime·rt0_go 方法:
- TEXT _rt0_amd64(SB),NOSPLIT,$-8
- MOVQ 0(SP), DI // argc
- LEAQ 8(SP), SI // argv
- JMP runtime·rt0_go(SB)
该方法将程序输入的 argc 和 argv 从内存移动到寄存器中。
栈指针(SP)的前两个值分别是 argc 和 argv,其对应参数的数量和具体各参数的值。
程序参数准备就绪后,正式初始化的方法落在 runtime·rt0_go 方法中:
- TEXT runtime·rt0_go(SB),NOSPLIT,$0
- ...
- CALL runtime·check(SB)
- MOVL 16(SP), AX // copy argc
- MOVL AX, 0(SP)
- MOVQ 24(SP), AX // copy argv
- MOVQ AX, 8(SP)
- CALL runtime·args(SB)
- CALL runtime·osinit(SB)
- CALL runtime·schedinit(SB)
- // create a new goroutine to start program
- MOVQ $runtime·mainPC(SB), AX // entry
- PUSHQ AX
- PUSHQ $0 // arg size
- CALL runtime·newproc(SB)
- POPQ AX
- POPQ AX
- // start this M
- CALL runtime·mstart(SB)
- ...
初始化完毕后进行主协程(main goroutine)的运行,并放入等待队列(GMP 模型),最后调度器开始进行循环调度。
根据上述源码剖析,可以得出如下 Go 应用程序引导的流程图:
Go 程序引导过程
在 Go 语言中,实际的运行入口并不是用户日常所写的 main func,更不是 runtime.main 方法,而是从 rt0_*_amd64.s 开始,最终再一路 JMP 到 runtime·rt0_go 里去,再在该方法里完成一系列 Go 自身所需要完成的绝大部分初始化动作。
其中整体包括:
后续将会继续剖析将进一步剖析 runtime·rt0_go 里的爱与恨,尤其像是 runtime.main、runtime.schedinit 等调度方法,都有非常大的学习价值,有兴趣的小伙伴可以持续关注。
知道了 Go 程序是怎么引导起来的之后,我们需要了解 Go Runtime 中调度器是怎么流转的。
runtime.mstart
这里主要关注 runtime.mstart 方法:
- func mstart() {
- // 获取 g0
- _g_ := getg()
- // 确定栈边界
- osStack := _g_.stack.lo == 0
- if osStack {
- size := _g_.stack.hi
- if size == 0 {
- size = 8192 * sys.StackGuardMultiplier
- }
- _g_.stack.hi = uintptr(noescape(unsafe.Pointer(&size)))
- _g_.stack.lo = _g_.stack.hi - size + 1024
- }
- _g_.stackguard0 = _g_.stack.lo + _StackGuard
- _g_.stackguard1 = _g_.stackguard0
- // 启动 m,进行调度器循环调度
- mstart1()
- // 退出线程
- if mStackIsSystemAllocated() {
- osStack = true
- }
- mexit(osStack)
- }
runtime.mstart1
这么看来其实质逻辑在 mstart1 方法,我们继续往下剖析:
- func mstart1() {
- // 获取 g,并判断是否为 g0
- _g_ := getg()
- if _g_ != _g_.m.g0 {
- throw("bad runtime·mstart")
- }
- // 初始化 m 并记录调用方 pc、sp
- save(getcallerpc(), getcallersp())
- asminit()
- minit()
- // 设置信号 handler
- if _g_.m == &m0 {
- mstartm0()
- }
- // 运行启动函数
- if fn := _g_.m.mstartfn; fn != nil {
- fn()
- }
- if _g_.m != &m0 {
- acquirep(_g_.m.nextp.ptr())
- _g_.m.nextp = 0
- }
- schedule()
- }
忙活了一大圈,终于进入到开题的主菜了,原来潜伏的很深的 schedule 方法才是真正做调度的方法,其他都是前置处理和准备数据。
由于篇幅问题,schedule 方法会放到下篇再继续剖析,我们先聚焦本篇的一些细节点。
问题深剖
不过到这里篇幅也已经比较长了,积累了不少问题。我们针对在 Runtime 中出镜率最高的两个元素进行剖析:
m0
m0 是 Go Runtime 所创建的第一个系统线程,一个 Go 进程只有一个 m0,也叫主线程。
从多个方面来看:
g0
执行调度任务的叫 g0。
g0 比较特殊,每一个 m 都只有一个 g0(仅此只有一个 g0),且每个 m 都只会绑定一个 g0。在 g0 的赋值上也是通过汇编赋值的,其余后续所创建的都是常规的 g。
从多个方面来看:
数据结构:g0 和其他创建的 g 在数据结构上是一样的,但是存在栈的差别。在 g0 上的栈分配的是系统栈,在 Linux 上栈大小默认固定 8MB,不能扩缩容。而常规的 g 起始只有 2KB,可扩容。
运行状态:g0 和常规的 g 不一样,没有那么多种运行状态,也不会被调度程序抢占,调度本身就是在 g0 上运行的。
变量声明:g0 和常规 g,g0 的定义就是 var g0 g,没什么特别之处。
小结
在本章节中我们讲解了 Go 调度器初始化的一个过程,分别涉及:
基于此也了解到了在调度器初始化过程中,需要准备什么,初始化什么。另外针对调度过程中最常提到的 m0、g0 的概念我们进行了梳理和说明。
总结
在今天这篇文章中,我们详细的介绍了 Go 语言的引导启动过程中的所有流程和初始化动作。
同时针对调度器的初始化进行了初步分析,详细介绍了 m0、g0 的用途和区别。在下一篇文章中我们将进一步对真正调度的 schedule 方法进行详解,这块也是个硬骨头了。
新闻名称:详解Go程序的启动流程,你知道g0,m0是什么吗?
新闻来源:http://www.shufengxianlan.com/qtweb/news18/380268.html
网站建设、网络推广公司-创新互联,是专注品牌与效果的网站制作,网络营销seo公司;服务项目有等
声明:本网站发布的内容(图片、视频和文字)以用户投稿、用户转载内容为主,如果涉及侵权请尽快告知,我们将会在第一时间删除。文章观点不代表本网站立场,如需处理请联系客服。电话:028-86922220;邮箱:631063699@qq.com。内容未经允许不得转载,或转载时需注明来源: 创新互联