将PyTorch投入生产的5个常见错误

 导读

专注于为中小企业提供成都网站制作、成都网站设计服务,电脑端+手机端+微信端的三站合一,更高效的管理,为中小企业海港免费做网站提供优质的服务。我们立足成都,凝聚了一批互联网行业人才,有力地推动了上1000+企业的稳健成长,帮助中小企业通过网站建设实现规模扩充和转变。

本文列举了5个将PyTorch应用到生产时容易遇到的5个错误操作。

ML是有趣的,ML是受欢迎的,ML无处不在。大多数公司要么使用TensorFlow,要么使用PyTorch,还有些老家伙喜欢Caffe。

尽管大多数教程和在线教程使用TensofFlow,但我的大部分经验都是使用PyTorch。在这里,我想分享在生产中使用PyTorch最常见的5个错误。考虑过使用CPU吗?使用多线程?使用更多的GPU内存?这些坑我们都踩过。

错误 #1 — 在推理模式下保存动态图

如果你以前使用过TensorFlow,那么你可能知道TensorFlow和PyTorch之间的关键区别 —— 静态图和动态图。调试TensorFlow非常困难,因为每次模型更改时都要重新构建graph。这需要时间、努力和你的希望。当然,TensorFlow现在更好了。

总的来说,为了使调试更容易,ML框架使用动态图,这些图与PyTorch中所谓的Variables有关。你使用的每个变量都链接到前一个变量,以构建反向传播的关系。

下面是它在实际中的样子:

在大多数情况下,你希望在模型训练完成后优化所有的计算。如果你看一下torch的接口,有很多可选项,特别是在优化方面。eval模式、detach和no_grad的方法造成了很多混乱。让我来解释一下它们是如何工作的。在模型被训练和部署之后,以下是你所关心的事情:速度、速度和CUDA内存溢出异常。

为了加速PyTorch模型,你需要将它切换到eval模式。它通知所有层在推理模式下使用batchnorm和dropout层(简单地说就是不使用dropout)。现在,有一个detach方法可以将变量从它的计算图中分离出来。当你从头开始构建模型时,它很有用,但当你想重用SOTA的模型时,它就不太有用了。一个更全局性的解决方案将是在前向传播的时候在上下文中使用torch.no_grad。这样可以不用在在结果中存储图中变量的梯度,从而减少内存消耗。它节省内存,简化计算,因此,你得到更多的速度和更少的内存使用。

错误 #2 — 没有使能cudnn优化算法

你可以在nn.Module中设置很多布尔标志,有一个是你必须知道的。使用cudnn.benchmark = True来对cudnn进行优化。通过设置cudnn.enabled = True,可以确保cudnn确实在寻找最优算法。NVIDIA在优化方面为你提供了很多神奇的功能,你可以从中受益。

请注意你的数据必须在GPU上,模型输入大小不应该改变。数据的形状的变化越多,可以做的优化就越少。例如,要对数据进行归一化,可以对图像进行预处理。总之,可以有变化,但不要太多。

错误 #3 — 重用 JIT-compilation

PyTorch提供了一种简单的方法来优化和重用来自不同语言的模型(见Python-To-Cpp)。如果你足够勇敢,你可能会更有创造力,并将你的模型嵌入到其他语言中。

JIT-compilation允许在输入形状不变的情况下优化计算图。它的意思是,如果你的数据形状变化不大(参见错误#2),JIT是一种选择。老实说,和上面提到的no_grad和cudnn相比,它并没有太大的区别,但可能有。这只是第一个版本,有巨大的潜力。

请注意,如果你的模型中有conditions,这在RNNs中很常见,它就没法用了。

错误 #4 — 尝试扩展使用CPU

GPU很贵,云虚拟机也一样很贵。即使使用AWS,一个实例也将花费你大约100美元/天(最低价格是0.7美元/小时)。也许有人会想“如果我用5个CPU来代替1个GPU可以吗?”。所有试过的人都知道这是一个死胡同。是的,你可以为CPU优化一个模型,但是最终它还是会比GPU慢。相信我,我强烈建议忘记这个想法。

错误 #5 — 处理向量而不是矩阵

  • cudnn - check
  • no_grad - check
  • GPU with correct version of CUDA - check
  • JIT-compilation - check

一切都准备好了,还能做什么?

现在是时候使用一点数学了。如果你还记得大部分NN是如何用所谓的张量训练的。张量在数学上是一个n维数组或多线性几何向量。你能做的就是把输入(如果你有足够的时间的话)分组成张量或者矩阵,然后把它输入到你的模型中。例如,使用图像数组作为发送到PyTorch的矩阵。性能增益等于同时传递的对象数量。

这是一个显而易见的解决方案,但是很少有人真正使用它,因为大多数时候对象都是一个一个地处理的,而且在流程上设置这样的流可能有点困难。别担心,你会成功的!

当前标题:将PyTorch投入生产的5个常见错误
分享链接:http://www.shufengxianlan.com/qtweb/news18/45768.html

网站建设、网络推广公司-创新互联,是专注品牌与效果的网站制作,网络营销seo公司;服务项目有等

广告

声明:本网站发布的内容(图片、视频和文字)以用户投稿、用户转载内容为主,如果涉及侵权请尽快告知,我们将会在第一时间删除。文章观点不代表本网站立场,如需处理请联系客服。电话:028-86922220;邮箱:631063699@qq.com。内容未经允许不得转载,或转载时需注明来源: 创新互联