本文转载自微信公众号「 yes的练级攻略」,作者 是Yes呀。转载本文请联系 yes的练级攻略公众号。
创新互联专注于江南网站建设服务及定制,我们拥有丰富的企业做网站经验。 热诚为您提供江南营销型网站建设,江南网站制作、江南网页设计、江南网站官网定制、小程序制作服务,打造江南网络公司原创品牌,更为您提供江南网站排名全网营销落地服务。
你好,我是yes。
最近了解了下 PolarDB MySQL,后续有机会分享下学习心得。
今天这篇先聊聊其内部引入 Blink Tree 来替换 B+Tree 的事情。
想必大伙都非常熟悉 B+Tree,面试常客,但是 Blink Tree 确实很少有人提到,它是 B+Tree 的升级版,据阿里云文档所述,通过对 B+Tree 的优化,可以将交易场景下 PolarDB 的读写性能提升20%。
那么 B+Tree 哪块表现的不好呢?
主要是并发场景下,写操作导致节点分裂(SMO,Split Merge Operation)的时候,刚好有并发读操作访问到错误的叶子节点,查错了节点,那么目标值肯定就搜索不到了,于是导致了错误查询。
举个例子,比如现有如下的一个 B+Tree:
图片
此时,插入一个数据 27,恰好页A满了,需要触发分裂,新增一个页B,且同时有个读取请求,想要访问数据 29。
图片
那么很有可能在分裂的时候,读请求访问到老的页面指针,指向了页 A,而页 A 内的 29 已经被分裂到新的页 B 中,这样一来读请求就发现没有 29 ,于是返回没数据,这就错乱了。
而且,叶子节点的分裂,可能会导致父节点的分裂,这种调整最长可能级联到根节点,并发场景下很容易导致错误,为了避免这种情况的发生,最简单的操作就是在发生节点分裂时,把整颗 B+Tree 都锁了。
这样一来数据的正确性得到了保证,但是性能就很低了,因为全局锁会影响了对所有页的访问。
后续 MySQL 对其在 5.7 版本后做了优化,但是整个 B+Tree 同时只能支持一个 SMO 操作的发生,高并发时大数据量插入导致多 SMO 的发生还是会被阻塞,影响性能。
Blink Tree 主要引入了 high key 和 link 指针来解决并发读写中间态数据访问出错问题,能降低锁的粒度,提高性能。
high key 存储了每个节点的最大值,每个节点的 link 指针则指向了同层右侧的兄弟节点,在写入数据的时候,仅需对当前节点加锁,当前节点修改完毕后立马解锁,锁的粒度很细,并发度很高。
那具体是如何解决并发时候 SMO 中间态问题的呢?
我们直接来看来阿里云官网给的一个示意图:
图片
可以看到,相比于 B+Tree,Blink Tree的兄弟节点也进行了指针相连,当分裂在进行中还未完成,也就是父节点到新的子节点的链接还没有建立时,B+Tree 我们已经演示过了,并发读可能导致数据查询不到。
而 Blink Tree 就能解决这个问题,当读请求沿着老指针访问老页面的时候,对比下 high key,发现查询的值比当前页 high key 大,那么就沿着 link 指针找到旁边新分配的页面,此时就可以找到要查询的值了。
这篇就简单介绍到这,对我们正常业务开发同学来说 Blink Tree 的理解到这也就差不多了,有兴趣的可以再看看 Blink Tree 的论文
还有这篇文章
分享标题:别B+树了,out了
网站网址:http://www.shufengxianlan.com/qtweb/news19/15819.html
网站建设、网络推广公司-创新互联,是专注品牌与效果的网站制作,网络营销seo公司;服务项目有等
声明:本网站发布的内容(图片、视频和文字)以用户投稿、用户转载内容为主,如果涉及侵权请尽快告知,我们将会在第一时间删除。文章观点不代表本网站立场,如需处理请联系客服。电话:028-86922220;邮箱:631063699@qq.com。内容未经允许不得转载,或转载时需注明来源: 创新互联