50个常用的Numpy函数解释,参数和使用示例

Numpy是python中最有用的工具之一。它可以有效地处理大容量数据。使用NumPy的最大原因之一是它有很多处理数组的函数。在本文中,将介绍NumPy在数据科学中最重要和最有用的一些函数。

新余网站建设公司创新互联建站,新余网站设计制作,有大型网站制作公司丰富经验。已为新余上1000家提供企业网站建设服务。企业网站搭建\外贸网站制作要多少钱,请找那个售后服务好的新余做网站的公司定做!

创建数组

1、Array

它用于创建一维或多维数组。

Dtype:生成数组所需的数据类型。

ndim:指定生成数组的最小维度数。

import numpy as np
np.array([1,2,3,4,5])
----------------
array([1, 2, 3, 4, 5, 6])

还可以使用此函数将pandas的df和series转为NumPy数组。

sex = pd.Series(['Male','Male','Female'])
np.array(sex)
------------------------
array(['Male', 'Male', 'Female'], dtype=object)

2、Linspace

创建一个具有指定间隔的浮点数的数组。

start:起始数字

end:结束

Num:要生成的样本数,默认为50。

np.linspace(10,100,10)
--------------------------------
array([ 10., 20., 30., 40., 50., 60., 70., 80., 90., 100.])

3、Arange

在给定的间隔内返回具有一定步长的整数。

step:数值步长。

np.arange(5,10,2)
-----------------------
array([5, 7, 9])

4、Uniform

在上下限之间的均匀分布中生成随机样本。

np.random.uniform(5,10,size = 4)
------------
array([6.47445571, 5.60725873, 8.82192327, 7.47674099])
np.random.uniform(size = 5)
------------
array([0.83358092, 0.41776134, 0.72349553])
np.random.uniform(size = (2,3))
------------
array([[0.7032511 , 0.63212039, 0.6779683 ],
[0.81150812, 0.26845613, 0.99535264]])

5、Random.randint

在一个范围内生成n个随机整数样本。

np.random.randint(5,10,10)
------------------------------
array([6, 8, 9, 9, 7, 6, 9, 8, 5, 9])

6、Random.random

生成n个随机浮点数样本。

np.random.random(3)
---------------------------
array([0.87656396, 0.24706716, 0.98950278])

7、Logspace

在对数尺度上生成间隔均匀的数字。

Start:序列的起始值。

End:序列的最后一个值。

endpoint:如果为True,最后一个样本将包含在序列中。

base:底数。默认是10。

np.logspace(0,10,5,base=2)
------------------
array([1.00000000e+00, 5.65685425e+00, 3.20000000e+01, 1.81019336e+02,1.02400000e+03])

8、zeroes

np.zeroes会创建一个全部为0的数组。

shape:阵列的形状。

Dtype:生成数组所需的数据类型。' int '或默认' float '

np.zeros((2,3),dtype='int')
---------------
array([[0, 0, 0],
[0, 0, 0]])
np.zeros(5)
-----------------
array([0., 0., 0., 0., 0.])

9、ones

np.ones函数创建一个全部为1的数组。

np.ones((3,4))
------------------
array([[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.]])

10、full

创建一个单独值的n维数组。

fill_value:填充值。

np.full((2,4),fill_value=2)
--------------
array([[2, 2, 2, 2],
[2, 2, 2, 2]])(2,4) : ꜱʜᴀᴘᴇ

11、Identity

创建具有指定维度的单位矩阵。

np.identity(4)
----------
array([[1., 0., 0., 0.],
[0., 1., 0., 0.],
[0., 0., 1., 0.],
[0., 0., 0., 1.]])#ᴅᴇꜰᴀᴜʟᴛ ᴅᴀᴛᴀ ᴛʏᴘᴇ ɪꜱ `ꜰʟᴏᴀᴛ`

数组操作

12、min

返回数组中的最小值。

axis:用于操作的轴。

out:用于存储输出的数组。

arr = np.array([1,1,2,3,3,4,5,6,6,2])
np.min(arr)
----------------
1

13、max

返回数组中的最大值。

np.max(arr)
------------------
6

14、unique

返回一个所有唯一元素排序的数组。

return_index:如果为True,返回数组的索引。

return_inverse:如果为True,返回唯一数组的下标。

return_counts:如果为True,返回数组中每个唯一元素出现的次数。

axis:要操作的轴。默认情况下,数组被认为是扁平的。

np.unique(arr,return_counts=True)
---------------------
(
array([1, 2, 3, 4, 5, 6]), ## Unique elements
array([2, 2, 2, 1, 1, 2], dtype=int64) ## Count
)

15、mean

返回数组的平均数。

np.mean(arr,dtype='int')
-------------------------------
3

16、medain

返回数组的中位数。

arr = np.array([[1,2,3],[5,8,4]])
np.median(arr)
-----------------------------
3.5

17、digitize

返回输入数组中每个值所属的容器的索引。

bin:容器的数组。

right:表示该间隔是否包括右边或左边的bin。

a = np.array([-0.9, 0.5, 0.9, 1, 1.2, 1.4, 3.6, 4.7, 5.3])
bins = np.array([0,1,2,3])
np.digitize(a,bins)
-------------------------------
array([0, 1, 1, 2, 2, 2, 4, 4, 4], dtype=int64)
Exp Value
x < 0 : 0
0 <= x <1 : 1
1 <= x <2 : 2
2 <= x <3 : 3
3 <=x : 4
Compares -0.9 to 0, here x < 0 so Put 0 in resulting array.
Compares 0.5 to 0, here 0 <= x <1 so Put 1.
Compares 5.4 to 4, here 3<=x so Put 4

18、reshape

它是NumPy中最常用的函数之一。它返回一个数组,其中包含具有新形状的相同数据。

A = np.random.randint(15,size=(4,3))
A
----------------------
array([[ 8, 14, 1],
[ 8, 11, 4],
[ 9, 4, 1],
[13, 13, 11]])
A.reshape(3,4)
-----------------
array([[ 8, 14, 1, 8],
[11, 4, 9, 4],
[ 1, 13, 13, 11]])
A.reshape(-1)
-------------------
array([ 8, 14, 1, 8, 11, 4, 9, 4, 1, 13, 13, 11])

19、expand_dims

它用于扩展数组的维度。

arr = np.array([ 8, 14, 1, 8, 11, 4, 9, 4, 1, 13, 13, 11])
np.expand_dims(A,axis=0)
-------------------------
array([[ 8, 14, 1, 8, 11, 4, 9, 4, 1, 13, 13, 11]])
np.expand_dims(A,axis=1)
---------------------------
array([[ 8],
[14],
[ 1],
[ 8],
[11],
[ 4],
[ 9],
[ 4],
[ 1],
[13],
[13],
[11]])

20、squeeze

通过移除一个单一维度来降低数组的维度。

arr = np.array([[ 8],[14],[ 1],[ 8],[11],[ 4],[ 9],[ 4],[ 1],[13],[13],[11]])
np.squeeze(arr)
---------------------------
array([ 8, 14, 1, 8, 11, 4, 9, 4, 1, 13, 13, 11])

21、count_nonzero

计算所有非零元素并返回它们的计数。

a = np.array([0,0,1,1,1,0])
np.count_nonzero(a)
--------------------------
3

22、argwhere

查找并返回非零元素的所有下标。

a = np.array([0,0,1,1,1,0])
np.argwhere(a)
---------------------
array([[2],[3],[4]], dtype=int64)

23、argmax & argmin

argmax返回数组中Max元素的索引。它可以用于多类图像分类问题中获得高概率预测标签的指标。

arr = np.array([[0.12,0.64,0.19,0.05]])
np.argmax(arr)
---------
1

argmin将返回数组中min元素的索引。

np.argmin(min)
------
3

24、sort

对数组排序。

kind:要使用的排序算法。{‘quicksort’, ‘mergesort’, ‘heapsort’, ‘stable’}

arr = np.array([2,3,1,7,4,5])
np.sort(arr)
----------------
array([1, 2, 3, 4, 5, 7])

25、abs

返回数组中元素的绝对值。当数组中包含负数时,它很有用。

A = np.array([[1,-3,4],[-2,-4,3]])np.abs(A)
---------------
array([[1, 3, 4],
[2, 4, 3]])

26、round

将浮点值四舍五入到指定数目的小数点。

decimals:要保留的小数点的个数。

a = np.random.random(size=(3,4))
a
-----
array([[0.81695699, 0.42564822, 0.65951417, 0.2731807 ],
[0.7017702 , 0.12535894, 0.06747666, 0.55733467],
[0.91464488, 0.26259026, 0.88966237, 0.59253923]])

np.round(a,decimals=0)
------------
array([[1., 0., 1., 1.],
[1., 1., 1., 1.],
[0., 1., 0., 1.]])
np.round(a,decimals=1)
-------------
array([[0.8, 0. , 0.6, 0.6],
[0.5, 0.7, 0.7, 0.8],
[0.3, 0.9, 0.5, 0.7]])

27、clip

它可以将数组的裁剪值保持在一个范围内。

arr = np.array([0,1,-3,-4,5,6,7,2,3])
arr.clip(0,5)
-----------------
array([0, 1, 0, 0, 5, 5, 5, 2, 3])
arr.clip(0,3)
------------------
array([0, 1, 0, 0, 3, 3, 3, 2, 3])
arr.clip(3,5)
------------------
array([3, 3, 3, 3, 5, 5, 5, 3, 3])

替换数组中的值

28、where

返回满足条件的数组元素。

condition:匹配的条件。如果true则返回x,否则y。

a = np.arange(12).reshape(4,3)
a
-------
array([[ 0, 1, 2],
[ 3, 4, 5],
[ 6, 7, 8],
[ 9, 10, 11]])

np.where(a>5) ## Get The Index
--------------------
(array([2, 2, 2, 3, 3, 3], dtype=int64),
array([0, 1, 2, 0, 1, 2], dtype=int64))

a[np.where(a>5)] ## Get Values
--------------------------
array([ 6, 7, 8, 9, 10, 11])

它还可以用来替换pandas df中的元素。

np.where(data[feature].isnull(), 1, 0)

29、put

用给定的值替换数组中指定的元素。

a:数组

Ind:需要替换的索引。

V:替换值。

arr = np.array([1,2,3,4,5,6])
arr
--------
array([1, 2, 3, 4, 5, 6])
np.put(arr,[1,2],[6,7])
arr
--------
array([1, 6, 7, 4, 5, 6])

30、copyto

将一个数组的内容复制到另一个数组中。

dst:目标

src:来源

arr1 = np.array([1,2,3])
arr2 = np.array([4,5,6])
print("Before arr1",arr1)
print("Before arr2",arr1)
np.copyto(arr1,arr2)
print("After arr1",arr1)
print("After arr2",arr2)
---------------------------
Before arr1 [1 2 3]
Before arr2 [4 5 6]
After arr1 [4 5 6]
After arr2 [4 5 6]

集合操作

31、查找公共元素

intersect1d函数以排序的方式返回两个数组中所有唯一的值。

Assume_unique:如果为真值,则假设输入数组都是唯一的。

Return_indices:如果为真,则返回公共元素的索引。

ar1 = np.array([1,2,3,4,5,6])
ar2 = np.array([3,4,5,8,9,1])
np.intersect1d(ar1,ar2)
---------------
array([1, 3, 4, 5])
np.intersect1d(ar1,ar2,return_indices=True)
---------------
(array([1, 3, 4, 5]), ## Common Elements
array([0, 2, 3, 4], dtype=int64),
array([5, 0, 1, 2], dtype=int64))

32、查找不同元素

np.setdiff1d函数返回arr1中在arr2中不存在的所有唯一元素。

a = np.array([1, 7, 3, 2, 4, 1])
b = np.array([9, 2, 5, 6, 7, 8])
np.setdiff1d(a, b)
---------------------
array([1, 3, 4])

33、从两个数组中提取唯一元素

Setxor1d 将按顺序返回两个数组中所有唯一的值。

a = np.array([1, 2, 3, 4, 6])
b = np.array([1, 4, 9, 4, 36])
np.setxor1d(a,b)
--------------------
array([ 2, 3, 6, 9, 36])

34、合并

Union1d函数将两个数组合并为一个。

a = np.array([1, 2, 3, 4, 5])
b = np.array([1, 3, 5, 4, 36])
np.union1d(a,b)
-------------------
array([ 1, 2, 3, 4, 5, 36])

数组分割

35、水平分割

Hsplit函数将数据水平分割为n个相等的部分。

A = np.array([[3,4,5,2],[6,7,2,6]])
np.hsplit(A,2) ## splits the data into two equal parts
---------------
[ array([[3, 4],[6, 7]]), array([[5, 2],[2, 6]]) ]
np.hsplit(A,4) ## splits the data into four equal parts
-----------------
[ array([[3],[6]]), array([[4],[7]]),
array([[5],[2]]), array([[2],[6]]) ]

36、垂直分割

Vsplit将数据垂直分割为n个相等的部分。

A = np.array([[3,4,5,2],[6,7,2,6]])
np.vsplit(A,2)
----------------
[ array([[3, 4, 5, 2]]), array([[6, 7, 2, 6]]) ]

数组叠加

37、水平叠加

hstack 将在另一个数组的末尾追加一个数组。

a = np.array([1,2,3,4,5])
b = np.array([1,4,9,16,25])
np.hstack((a,b))
---------------------
array([ 1, 2, 3, 4, 5, 1, 4, 9, 16, 25])

38、垂直叠加

vstack将一个数组堆叠在另一个数组上。

np.vstack((a,b))
----------------------
array([[ 1, 2, 3, 4, 5],
[ 1, 4, 9, 16, 25]])

数组比较

39、allclose

如果两个数组的形状相同,则Allclose函数根据公差值查找两个数组是否相等或近似相等。

a = np.array([0.25,0.4,0.6,0.32])
b = np.array([0.26,0.3,0.7,0.32])
tolerance = 0.1 ## Total Difference
np.allclose(a,b,tolerance)
---------
False
tolerance = 0.5
np.allclose(a,b,tolerance)
----------
True

40、equal

它比较两个数组的每个元素,如果元素匹配就返回True。

np.equal(arr1,arr2)
-------------
array([ True, True, True, False, True, True])

重复的数组元素

40、repeat

它用于重复数组中的元素n次。

A:重复的元素

Repeats:重复的次数。

np.repeat('2017',3)
---------------------
array(['2017', '2017', '2017'], dtype='

让我们来看一个更实际的示例,我们有一个包含按年数量销售的数据集。

fruits = pd.DataFrame([
['Mango',40],
['Apple',90],
['Banana',130]
],columns=['Product','ContainerSales'])
fruits

在数据集中,缺少年份列。我们尝试使用numpy添加它。

fruits['year'] = np.repeat(2020,fruits.shape[0])
fruits

41、tile

通过重复A,rep次来构造一个数组。

np.tile("Ram",5)
-------
array(['Ram', 'Ram', 'Ram', 'Ram', 'Ram'], dtype='np.tile(3,(2,3))
-------
array([[3, 3, 3],
[3, 3, 3]])

爱因斯坦求和

42、einsum

此函数用于计算数组上的多维和线性代数运算。

a = np.arange(1,10).reshape(3,3)
b = np.arange(21,30).reshape(3,3)
np.einsum('ii->i',a)
------------
array([1, 5, 9])
np.einsum('ji',a)
------------
array([[1, 4, 7],
[2, 5, 8],
[3, 6, 9]])

np.einsum('ij,jk',a,b)
------------
array([[150, 156, 162],
[366, 381, 396],
[582, 606, 630]])

p.einsum('ii',a)
----------
15

统计分析

43、直方图

这是Numpy的重要统计分析函数,可计算一组数据的直方图值。

A = np.array([[3, 4, 5, 2],
[6, 7, 2, 6]])
np.histogram(A)
-------------------
(array([2, 0, 1, 0, 1, 0, 1, 0, 2, 1], dtype=int64),
array([2. , 2.5, 3. , 3.5, 4. , 4.5, 5. , 5.5, 6. , 6.5, 7. ]))

44、百分位数

沿指定轴计算数据的Q-T-T百分位数。

a:输入。

q:要计算的百分位。

overwrite_input:如果为true,则允许输入数组修改中间计算以节省内存。

a = np.array([[2, 4, 6], [4, 8, 12]])
np.percentile(a, 50)
-----------
5.0
np.percentile(a, 10)
------------
3.0
arr = np.array([2,3,4,1,6,7])
np.percentile(a,5)
------------
2.5

45、标准偏差和方差

std和var是NumPy的两个函数,用于计算沿轴的标准偏差和方差。

a = np.array([[2, 4, 6], [4, 8, 12]])
np.std(a,axis=1)
--------
array([1.63299316, 3.26598632])
np.std(a,axis=0) ## Column Wise
--------
array([1., 2., 3.])
np.var(a,axis=1)
-------------------
array([ 2.66666667, 10.66666667])
np.var(a,axis=0)
-------------------
array([1., 4., 9.])

数组打印

46、显示带有两个十进制值的浮点数

np.set_printoptions(precision=2)
a = np.array([12.23456,32.34535])
print(a)
------------
array([12.23,32.34])

47、设置打印数组最大值

np.set_printoptions(threshold=np.inf)

48、增加一行中元素的数量

np.set_printoptions(linewidth=100) ## 默认是 75

保存和加载数据

49、保存

savetxt用于在文本文件中保存数组的内容。

arr = np.linspace(10,100,500).reshape(25,20) 
np.savetxt('array.txt',arr)

50、加载

用于从文本文件加载数组,它以文件名作为参数。

np.loadtxt('array.txt')

以上就是50个numpy常用的函数,希望对你有所帮助。

当前标题:50个常用的Numpy函数解释,参数和使用示例
网页地址:http://www.shufengxianlan.com/qtweb/news23/93323.html

网站建设、网络推广公司-创新互联,是专注品牌与效果的网站制作,网络营销seo公司;服务项目有等

广告

声明:本网站发布的内容(图片、视频和文字)以用户投稿、用户转载内容为主,如果涉及侵权请尽快告知,我们将会在第一时间删除。文章观点不代表本网站立场,如需处理请联系客服。电话:028-86922220;邮箱:631063699@qq.com。内容未经允许不得转载,或转载时需注明来源: 创新互联