Spark查询优化:提升关系型数据库性能
成都创新互联公司坚持“要么做到,要么别承诺”的工作理念,服务领域包括:成都网站制作、做网站、企业官网、英文网站、手机端网站、网站推广等服务,满足客户于互联网时代的万秀网站设计、移动媒体设计的需求,帮助企业找到有效的互联网解决方案。努力成为您成熟可靠的网络建设合作伙伴!
随着数据量的不断增加,传统的关系型数据库在处理海量数据时显得力不从心。而Spark作为一种高速、通用、可扩展、分布式内存计算引擎,已成为处理大数据和机器学习任务的首选工具之一。在现实应用中,人们经常需要将关系型数据库数据导入到Spark中,来进行各种数据的分析和处理。但是,因为关系型数据库和Spark有着不同的特性,所以在这个过程中,我们必须做到优化数据查询,以提高Spark的性能。
本文将介绍一些重要的Spark查询优化技巧,以及如何在数据导入过程中避免常见的问题,以提高关系型数据库性能。
一、了解Spark查询执行过程
Spark查询执行过程是很重要的,因为它有助于我们设计更好的查询。在Spark中,查询会被拆分成不同的阶段。例如,当我们查询从一个表中选取一个特定的列时,Spark 会把查询拆分成两个阶段。之一步是选择要保留的列,第二步是将所选列返回。因此,我们可以通过选择要保留的列来改善查询的性能。
二、避免全表扫描
在一个巨大的表中进行全表扫描会导致大量的I/O操作和内存消耗,因此我们需要避免全表扫描。我们可以使用多种方法来改进查询,如条件查询、使用索引、分区表等。
条件查询:条件查询是通过使用WHERE子句来限制要返回的结果行。例如,SELECT * FROM orders WHERE product_id=1234;
使用索引:使用索引可以帮助我们快速定位需要的记录,而不必扫描整个表。对于常见的查询条件,如日期范围或产品代码,我们可以使用索引来加速查询。
分区表:分区表是在表中分割数据的一种方式。这在宽表上特别有用,如日志表、事务表等。分区表将数据按逻辑分成各个分区,因此,当我们需要处理数据时,只需要处理目标分区,而不必扫描整个表。此外,Spark还支持动态分区,它可以让您在运行时为表添加新分区,可帮助您将数据加载到目标系统中,而无需预定义分区方案。
三、了解数据倾斜
在使用Spark处理大规模数据时,我们往往会遇到数据倾斜的问题。数据倾斜指的是数据在加工过程中,某个特定部分的数据扰动导致负载不平衡,从而导致一些任务远远耗时比其他任务长。数据倾斜会严重影响程序效率。
在Spark中,我们可以通过对数据进行分区来缓解数据倾斜。我们可以根据数据分布应用不同的分区策略来解决数据倾斜问题,如采用key-range分区策略、采样分区策略等。
四、使用广播变量
广播变量是用于将一个较小的只读变量缓存到每个工作节点上的一种机制。它能够跨作业传输信息以改善性能。在Spark中使用广播变量的过程很简单,只需要使用sparkContext.broadcast()函数将需要广播的变量进行打包,即可在每个处理节点上存储它,而不必将变量复制到每个节点。
广播变量的使用场景很多,例如:
1. 在join操作中将小表缓存到内存中,以避免运行时占用整个集群。
2. 在MapReduce任务中,将常量存储到广播变量中,以使不同的MapReduce作业都可以访问该变量。
3. 在数据建模时,将词典、停用词保存在广播变量中,以供注释器使用。
五、使用数据框架
在大多数情况下,使用数据框架(如Spark SQL)比使用RDD更高效。Spark SQL是一个基于Spark的模块,用于结构化数据处理。它提供了一种新的数据抽象层,使我们可以快速轻松地查询数据。
Spark SQL 能够将结构化数据读入DataFrames或者 Dataset对象中,提供了 SQL 语言的强大功能,如筛选、排序、聚合、Group By 操作等高级操作,同时对于使用Java或Python开发者进行编程的场景也非常的友好。
六、
查询优化是提高关系型数据库性能的重要步骤。本文介绍了一些查询优化的技术,如条件查询、使用索引、分区表、广播变量和使用数据框架等内容。
在实际应用中,我们可以根据实际情况灵活选用这些技巧,以提高Spark和关系型数据库的性能和效率。同时,我们还需要不断深入地学习和理解Spark框架的原理,来更好地优化和优化查询性能。
相关问题拓展阅读:
大数据的由来
对于“大数据”(Big data)研究机构Gartner给出了这样的定义。“大数据”是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力来适应海量、高
增长率
和多样化的信息资产。
1
麦肯锡
全球研究所给出的定义是:一种规模大到在获取、存储、管理、分析方面大大超出了传统数据库软件工具能力范围的数据,具有海量的数据规模、快速的数据流转、多样的数据类型和价值密度低四大特征。
大数据技术
的战略意义不在于掌握庞大的数据信息,而在于对这些含有意义的数据进行专业化处理。换而言之,如果把大数据比作一种产业,那么这种产业实现盈利的关键,在于提高对数据的“加工能力”,通过“加工纳迹碰”实现数据的“增值”。
从技术上看,大数据与云计算的关系就像一枚硬币的正反面一样密不可分。大数据必然无法用单台的计算机进行处理,必须采用分布式架构。它的特色在于对海量数据进行分布式
数据挖掘
。但它必须依托云计算的分布式处理、分布式数据库和云存储、虚拟化技术。
大数据需要特殊的技术,以有效地处理大量的容忍经过时间内的数据。适用于大数据的技术,包括大规模并行处理(MPP)数据库、数据挖掘、分布式文件系统、分布式数据库、云计算平台、互联网和可扩展的存储系统。
最小的基本单位是bit,按顺序给出所有单位:bit、Byte、KB、MB、GB、TB、PB、EB、ZB、YB、BB、NB、DB。
大数据的应用领域
大数据无处不在,大数据应用于各个行业,包括金融、 汽车 、餐饮、电信、能源、体能和 娱乐 等在内的 社会 各行各业都已经融入了大数据的印迹。
制造业,利用工业大数据提升制造业水平,包括产品故障诊断与预测、分析工艺流程、改进生产工艺,优化生产过程能耗、工业供应链分析与优化、生产计划与排程。
金融行业,大数据在高频交易、社交情绪分析和信贷风险分析三大金融创新领域发挥重大作用。
汽车 行业,利用大数据和
物联网技术
的无人驾州老驶 汽车 ,在不远的未来将走入我们的日常生活。
互联网行业,借助于大数据技术,可以分析客户行为,进行商品推荐和针对性广告投放。
电信行业,利用大数据技术实现客户离网分析,及时掌握客户离网倾向,出台客户挽留措施。
能源行业,随着智能电网的发展,电力公司可以掌握海量的用户用电信息,利用大数据技术分析用户用电模式,可以改进电网运行,合理设计电力需求响应系统,确保电网运行安全。
物流行业洞谈
,利用大数据优化物流网络,提高物流效率,降低物流成本。
城市管理,可以利用大数据实现智能交通、环保监测、城市规划和智能安防。
体育 娱乐 ,大数据可以帮助我们训练球队,决定投拍哪种 题财的 影视作品,以及预测比赛结果。
安全领域,可以利用大数据技术构建起强大的
国家安全
保障体系,企业可以利用大数据抵御网络攻击,警察可以借助大数据来预防犯罪。
个人生活, 大数据还可以应用于个人生活,利用与每个人相关联的“个人大数据”,分析个人生活行为习惯,为其提供更加周到的个性化服务。
大数据的价值,远远不止于此,大数据对各行各业的渗透,大大推动了 社会 生产和生活,未来必将产生重大而深远的影响。
大数据方面核心技术有哪些?
大数据技术的体系庞大且复杂,基础的技术包含数据的采集、数据预处理、
分布式存储
、NoSQL数据库、
数据仓库
、机器学习、并行计算、可视化等各种技术范畴和不同的技术层面。首先给出一个通用化的大数据处理框架,主要分为下面几个方面:数据采集与预处理、数据存储、
数据清洗
、数据查询分析和数据可视化。
数据采集与预处理
对于各种来源的数据,包括移动互联网数据、
社交网络
的数据等,这些结构化和非结构化的海量数据是零散的,也就是所谓的数据孤岛,此时的这些数据并没有什么意义,数据采集就是将这些数据写入数据仓库中,把零散的数据整合在一起,对这些数据综合起来进行分析。数据采集包括文件日志的采集、数据库日志的采集、
关系型数据库
的接入和应用程序的接入等。在数据量比较小的时候,可以写个定时的脚本将日志写入存储系统,但随着数据量的增长,这些方法无法提供数据安全保障,并且运维困难,需要更强壮的解决方案。
Flume NG
Flume NG作为实时日志收集系统,支持在日志系统中定制各类数据发送方,用于收集数据,同时,对数据进行简单处理,并写到各种数据接收方(比如文本,HDFS,Hbase等)。Flume NG采用的是三层架构:Agent层,Collector层和Store层,每一层均可水平拓展。其中Agent包含Source,Channel和 Sink,source用来消费(收集)数据源到channel组件中,channel作为中间临时存储,保存所有source的组件信息,sink从channel中读取数据,读取成功之后会删除channel中的信息。
NDC
Logstash
Logstash是开源的服务器端数据处理管道,能够同时从多个来源采集数据、转换数据,然后将数据发送到您最喜欢的 “存储库” 中。一般常用的存储库是Elasticsearch。Logstash 支持各种输入选择,可以在同一时间从众多常用的数据来源捕捉事件,能够以连续的流式传输方式,轻松地从您的日志、指标、Web 应用、数据存储以及各种 AWS 服务采集数据。
Sqoop
Sqoop,用来将关系型数据库和Hadoop中的数据进行相互转移的工具,可以将一个关系型数据库(例如Mysql、Oracle)中的数据导入到Hadoop(例如HDFS、Hive、Hbase)中,也可以将Hadoop(例如HDFS、Hive、Hbase)中的数据导入到关系型数据库(例如Mysql、Oracle)中。Sqoop 启用了一个 MapReduce 作业(极其容错的分布式并行计算)来执行任务。Sqoop 的另一大优势是其传输大量结构化或半结构化数据的过程是完全自动化的。
流式计算
流式计算是行业研究的一个热点,流式计算对多个高吞吐量的数据源进行实时的清洗、聚合和分析,可以对存在于
社交网站
、新闻等的数据信息流进行快速的处理并反馈,目前大数据流分析工具有很多,比如开源的strom,spark streaming等。
Strom集群结构是有一个主节点(nimbus)和多个工作节点(supervisor)组成的
主从结构
,主节点通过配置静态指定或者在运行时动态选举,nimbus与supervisor都是Storm提供的后台守护进程,之间的通信是结合Zookeeper的状态变更通知和监控通知来处理。nimbus进程的主要职责是管理、协调和监控集群上运行的topology(包括topology的发布、任务指派、事件处理时重新指派任务等)。supervisor进程等待nimbus分配任务后生成并监控worker(jvm进程)执行任务。supervisor与worker运行在不同的jvm上,如果由supervisor启动的某个worker因为错误异常退出(或被kill掉),supervisor会尝试重新生成新的worker进程。
Zookeeper
Zookeeper是一个分布式的,开放源码的分布式应用程序协调服务,提供数据同步服务。它的作用主要有配置管理、名字服务、分布式锁和集群管理。配置管理指的是在一个地方修改了配置,那么对这个地方的配置感兴趣的所有的都可以获得变更,省去了手动拷贝配置的繁琐,还很好的保证了数据的可靠和一致性,同时它可以通过名字来获取资源或者服务的地址等信息,可以监控集群中机器的变化,实现了类似于心跳机制的功能。
数据存储
Hadoop作为一个开源的框架,专为离线和大规模
数据分析
而设计,HDFS作为其核心的存储引擎,已被广泛用于数据存储。
HBase
HBase,是一个分布式的、面向列的开源数据库,可以认为是hdfs的封装,本质是数据存储、NoSQL数据库。HBase是一种Key/Value系统,部署在hdfs上,克服了hdfs在随机读写这个方面的缺点,与hadoop一样,Hbase目标主要依靠横向扩展,通过不断增加廉价的商用服务器,来增加计算和存储能力。
Phoenix
Phoenix,相当于一个Java
中间件
,帮助开发工程师能够像使用JDBC访问关系型数据库一样访问NoSQL数据库HBase。
Yarn
Yarn是一种Hadoop资源管理器,可为上层应用提供统一的资源管理和调度,它的引入为集群在利用率、资源统一管理和数据共享等方面带来了巨大好处。Yarn由下面的几大组件构成:一个全局的资源管理器ResourceManager、ResourceManager的每个节点代理NodeManager、表示每个应用的Application以及每一个ApplicationMaster拥有多个Container在NodeManager上运行。
Mesos
Mesos是一款开源的集群管理软件,支持Hadoop、ElasticSearch、Spark、Storm 和Kafka等应用架构。
Redis
Redis是一种速度非常快的非关系数据库,可以存储键与5种不同类型的值之间的映射,可以将存储在内存的键值对数据持久化到硬盘中,使用复制特性来扩展性能,还可以使用客户端分片来扩展写性能。
Atlas
Atlas是一个位于应用程序与MySQL之间的中间件。在后端DB看来,Atlas相当于连接它的客户端,在前端应用看来,Atlas相当于一个DB。Atlas作为服务端与应用程序通讯,它实现了MySQL的客户端和服务端协议,同时作为客户端与MySQL通讯。它对应用程序屏蔽了DB的细节,同时为了降低MySQL负担,它还维护了连接池。Atlas启动后会创建多个线程,其中一个为主线程,其余为工作线程。主线程负责监听所有的客户端连接请求,工作线程只监听主线程的命令请求。
Kudu
Kudu是围绕Hadoop生态圈建立的存储引擎,Kudu拥有和Hadoop生态圈共同的设计理念,它运行在普通的服务器上、可分布式规模化部署、并且满足工业界的高可用要求。其设计理念为fast ytics on fast data。作为一个开源的存储引擎,可以同时提供低延迟的随机读写和高效的数据分析能力。Kudu不但提供了行级的插入、更新、删除API,同时也提供了接近Parquet性能的批量扫描操作。使用同一份存储,既可以进行随机读写,也可以满足数据分析的要求。Kudu的应用场景很广泛,比如可以进行实时的数据分析,用于数据可能会存在变化的时序数据应用等。
在数据存储过程中,涉及到的数据表都是成千上百列,包含各种复杂的Query,推荐使用列式存储方法,比如parquent,ORC等对数据进行压缩。Parquet 可以支持灵活的压缩选项,显著减少磁盘上的存储。
数据清洗
MapReduce作为Hadoop的查询引擎,用于大规模数据集的并行计算,”Map(映射)”和”Reduce(归约)”,是它的主要思想。它极大的方便了编程人员在不会分布式并行编程的情况下,将自己的程序运行在分布式系统中。
随着业务数据量的增多,需要进行训练和清洗的数据会变得越来越复杂,这个时候就需要任务调度系统,比如oozie或者azkaban,对关键任务进行调度和监控。
Oozie
Oozie是用于Hadoop平台的一种工作流调度引擎,提供了RESTful API接口来接受用户的提交请求(提交工作流作业),当提交了workflow后,由工作流引擎负责workflow的执行以及状态的转换。用户在HDFS上部署好作业(MR作业),然后向Oozie提交Workflow,Oozie以异步方式将作业(MR作业)提交给Hadoop。这也是为什么当调用Oozie 的RESTful接口提交作业之后能立即返回一个JobId的原因,用户程序不必等待作业执行完成(因为有些大作业可能会执行很久(几个小时甚至几天))。Oozie在后台以异步方式,再将workflow对应的Action提交给hadoop执行。
Azkaban
Azkaban也是一种工作流的控制引擎,可以用来解决有多个hadoop或者spark等离线计算任务之间的依赖关系问题。azkaban主要是由三部分构成:Relational Database,Azkaban Web Server和Azkaban Executor Server。azkaban将大多数的状态信息都保存在MySQL中,Azkaban Web Server提供了Web UI,是azkaban主要的管理者,包括project的管理、认证、调度以及对工作流执行过程中的监控等;Azkaban Executor Server用来调度工作流和任务,记录工作流或者任务的日志。
流计算任务的处理平台Sloth,是网易首个自研流计算平台,旨在解决公司内各产品日益增长的流计算需求。作为一个计算服务平台,其特点是易用、实时、可靠,为用户节省技术方面(开发、运维)的投入,帮助用户专注于解决产品本身的流计算需求
数据查询分析
Hive
Hive的核心工作就是把SQL语句翻译成MR程序,可以将结构化的数据映射为一张数据库表,并提供 HQL(Hive SQL)查询功能。Hive本身不存储和计算数据,它完全依赖于HDFS和MapReduce。可以将Hive理解为一个客户端工具,将SQL操作转换为相应的MapReduce jobs,然后在hadoop上面运行。Hive支持标准的SQL语法,免去了用户编写MapReduce程序的过程,它的出现可以让那些精通SQL技能、但是不熟悉MapReduce 、编程能力较弱与不擅长Java语言的用户能够在HDFS大规模数据集上很方便地利用SQL 语言查询、汇总、分析数据。
Hive是为大数据批量处理而生的,Hive的出现解决了传统的关系型数据库(MySql、Oracle)在大数据处理上的瓶颈 。Hive 将执行计划分成map->shuffle->reduce->map->shuffle->reduce…的模型。如果一个Query会被编译成多轮MapReduce,则会有更多的写中间结果。由于MapReduce执行框架本身的特点,过多的中间过程会增加整个Query的执行时间。在Hive的运行过程中,用户只需要创建表,导入数据,编写SQL分析语句即可。剩下的过程由Hive框架自动的完成。
Impala
Impala是对Hive的一个补充,可以实现高效的SQL查询。使用Impala来实现SQL on Hadoop,用来进行大数据实时查询分析。通过熟悉的传统关系型数据库的SQL风格来操作大数据,同时数据也是可以存储到HDFS和HBase中的。Impala没有再使用缓慢的Hive+MapReduce批处理,而是通过使用与商用并行关系数据库中类似的分布式查询引擎(由Query Planner、Query Coordinator和Query Exec Engine三部分组成),可以直接从HDFS或HBase中用SELECT、JOIN和统计函数查询数据,从而大大降低了延迟。Impala将整个查询分成一执行计划树,而不是一连串的MapReduce任务,相比Hive没了MapReduce启动时间。
Hive 适合于长时间的批处理查询分析,而Impala适合于实时交互式SQL查询,Impala给数据人员提供了快速实验,验证想法的大数据分析工具,可以先使用Hive进行数据转换处理,之后使用Impala在Hive处理好后的数据集上进行快速的数据分析。总的来说:Impala把执行计划表现为一棵完整的执行计划树,可以更自然地分发执行计划到各个Impalad执行查询,而不用像Hive那样把它组合成管道型的map->reduce模式,以此保证Impala有更好的并发性和避免不必要的中间sort与shuffle。但是Impala不支持UDF,能处理的问题有一定的限制。
Spark
Spark拥有Hadoop MapReduce所具有的特点,它将Job中间输出结果保存在内存中,从而不需要读取HDFS。Spark 启用了内存分布数据集,除了能够提供交互式查询外,它还可以优化迭代工作负载。Spark 是在 Scala 语言中实现的,它将 Scala 用作其应用程序框架。与 Hadoop 不同,Spark 和 Scala 能够紧密集成,其中的 Scala 可以像操作本地对象一样轻松地操作分布式数据集。
Nutch
Nutch 是一个开源Java 实现的搜索引擎。它提供了我们运行自己的搜索引擎所需的全部工具,包括全文搜索和Web爬虫。
Solr
Solr用Java编写、运行在Servlet容器(如Apache Tomcat或Jetty)的一个独立的企业级搜索应用的全文搜索服务器。它对外提供类似于Web-service的API接口,用户可以通过http请求,向搜索引擎服务器提交一定格式的XML文件,生成索引;也可以通过Http Get操作提出查找请求,并得到XML格式的返回结果。
Elasticsearch
Elasticsearch是一个开源的全文搜索引擎,基于Lucene的搜索服务器,可以快速的储存、搜索和分析海量的数据。设计用于云计算中,能够达到实时搜索,稳定,可靠,快速,安装使用方便。
还涉及到一些机器学习语言,比如,Mahout主要目标是创建一些可伸缩的机器学习算法,供开发人员在Apache的许可下免费使用;深度学习框架Caffe以及使用数据流图进行数值计算的开源软件库TensorFlow等,常用的机器学习算法比如,贝叶斯、逻辑回归、决策树、神经网络、协同过滤等。
数据可视化
对接一些BI平台,将分析得到的数据进行可视化,用于指导决策服务。主流的BI平台比如,国外的敏捷BI Tableau、Qlikview、PowrerBI等,国内的SmallBI和新兴的网易有数等。
在上面的每一个阶段,保障数据的安全是不可忽视的问题。
基于网络身份认证的协议Kerberos,用来在非安全网络中,对个人通信以安全的手段进行身份认证,它允许某实体在非安全网络环境下通信,向另一个实体以一种安全的方式证明自己的身份。
控制权限的ranger是一个Hadoop集群权限框架,提供操作、监控、管理复杂的数据权限,它提供一个集中的管理机制,管理基于yarn的Hadoop生态圈的所有数据权限。可以对Hadoop生态的组件如Hive,Hbase进行细粒度的数据访问控制。通过操作Ranger控制台,管理员可以轻松的通过配置策略来控制用户访问HDFS文件夹、HDFS文件、数据库、表、字段权限。这些策略可以为不同的用户和组来设置,同时权限可与hadoop无缝对接。
简单说有三大核心技术:拿数据,算数据,卖数据。
今天真是一个美好的时代,有无数的开源系统可以为我们提供服务,现在有许多开发软件可以用到工业大数据中,当然很多系统还不成熟,应用到工业中还需要小心,并且需要开发人员对其进行一定的优化和调整。下面就简单介绍一些开源的大数据工具软件,看看有哪些能够应用到工业大数据领域。
下面这张图是我根据网上流传的一张开源大数据软件分类图整理的:
我们可以把开源大数据软件分成几类,有一些可以逐步应用到工业大数据领域,下面就一一介绍一下这些软件。(以下系统介绍大都来源于网络)
1、数据存储类
(1)关系数据库MySQL
这个就不用太多介绍了吧,关系型数据库领域应用最广泛的开源软件,目前属于 Oracle 旗下产品。
(2)文件数据库Hadoop
Hadoop是大数据时代的明星产品,它更大的成就在于实现了一个分布式文件系统(Hadoop Distributed FileSystem),简称HDFS。HDFS有高容错性的特点,并且设计用来部署在低廉的硬件上,而且它提供高吞吐量来访问应用程序的数据,适合那些有着超大数据集的应用程序。
Hadoop可以在工业大数据应用中用来作为底层的基础数据库,由于它采用了分布式部署的方式,如果是私有云部署,适用于大型企业集团。如果是公有云的话,可以用来存储文档、视频、图像等资料。
(3)列数据库Hbase
HBase是一个分布式的、面向列的开源数据库,HBase是Apache的Hadoop项目的子项目。HBase不同于一般的关系数据库,它是一个适合于非结构化数据存储的数据库。另一个不同的是HBase基于列的而不是基于行的模式。
基于Hbase开发的OpenTSDB,可以存储所有的时序(无须采样)来构建一个分布式、可伸缩的时间序列数据库。它支持秒级数据采集所有metrics,支持永久存储,可以做容量规划,并很容易的接入到现有的报警系统里。
这样的话,它就可以替代在工业领域用得最多的实时数据库。
(4)文档数据库MongoDB
MongoDB是一个介于关系数据库和非关系数据库之间的产品,是非关系数据库当中功能最丰富,最像关系数据库的。他支持的数据结构非常松散,是类似json的bson格式,因此可以存储比较复杂的数据类型。Mongo更大的特点是他支持的查询语言非常强大,其语法有点类似于面向对象的查询语言,几乎可以实现类似关系数据库单表查询的绝大部分功能,而且还支持对信闷链数据建立索引。
MongoDB适合于存储工业大数据中的各类文档,包括各类图纸、文档等。
(5)图数据库Neo4j/OrientDB
图数据库不是存放图片的,是基于图的形式构建的数据系统。
Neo4j是一个高性能的,NOSQL图形数据库,它将结构化数据存储在网络上而不是表中。它是一个嵌入式的、基于磁盘的、具备完全的事务特性的Java持久化引擎,但是它将结构化数据存储在网络(从数学角度叫做图)上而不是表中。Neo4j也可以被看作是一个高性能的图引擎,该引擎具有成熟数据库的所有特性。程序员工作在一个面向对象的、灵活的网络结构下而不是严格、静态的表中——但是他们可以享受到具备完全的事务特性、
企业级
的数据库的所有好处。
OrientDB是兼具文档数据库的灵活性和图形数据库管理 链接 能力的可深罩嫌层次扩展的文档-图形数据库管理系统。可选无模式、全模式或混合模式下。支持许多高级特性,诸如ACID事务、快速索引,原生和SQL查询功能。可以ON格式导入、导出文档。若不执行昂贵的JOIN操作的话,如同关系数据库可在几毫秒内可检索数以百记的链接文档图。
这些数据库都可以用来存储非结构化数据。
2、数据分析类
(1)批处理MapReduce/Spark
MapReduce是一种编程模型,用于大规模数据集(大于1TB)的并行运算。概念”Map(映射)”和”Reduce(归约)”,是它们的主要思想,都滑孙是从函数式编程语言里借来的,还有从矢量编程语言里借来的特性。它极大地方便了编程人员在不会分布式并行编程的情况下,将自己的程序运行在分布式系统上。 当前的软件实现是指定一个Map(映射)函数,用来把一组键值对映射成一组新的键值对,指定并发的Reduce(归约)函数,用来保证所有映射的键值对中的每一个共享相同的键组。
Apache Spark 是专为大规模数据处理而设计的快速通用的计算引擎。Spark 是一种与 Hadoop 相似的开源集群计算环境,但是两者之间还存在一些不同之处,这些有用的不同之处使 Spark 在某些工作负载方面表现得更加优越,换句话说,Spark 启用了内存分布数据集,除了能够提供交互式查询外,它还可以优化迭代工作负载。尽管创建 Spark 是为了支持分布式数据集上的迭代作业,但是实际上它是对 Hadoop 的补充,可以在 Hadoop 文件系统中并行运行。
这些大数据的明星产品可以用来做工业大数据的处理。
(2)流处理Storm
Storm是一个开源的分布式实时计算系统,可以简单、可靠的处理大量的数据流。Storm有很多使用场景:如实时分析,在线机器学习,持续计算,分布式RPC,ETL等等。Storm支持水平扩展,具有高容错性,保证每个消息都会得到处理,而且处理速度很快(在一个小集群中,每个结点每秒可以处理数以百万计的消息)。Storm的部署和运维都很便捷,而且更为重要的是可以使用任意编程语言来开发应用。
(3)图处理Giraph
Giraph是什么?Giraph是Apache基金会开源项目之一,被定义为迭代式图处理系统。他架构在Hadoop之上,提供了图处理接口,专门处理大数据的图问题。
Giraph的存在很有必要,现在的大数据的图问题又很多,例如表达人与人之间的关系的有社交网络,搜索引擎需要经常计算网页与网页之间的关系,而map-reduce接口不太适合实现图算法。
Giraph主要用于分析用户或者内容之间的联系或重要性。
(4)并行计算MPI/OpenCL
OpenCL(全称Open Computing Language,开放运算语言)是之一个面向
异构系统
通用目的并行编程的开放式、免费标准,也是一个统一的编程环境,便于软件开发人员为高性能计算
服务器
、桌面计算系统、手持设备编写高效轻便的代码,而且广泛适用于多核心处理器(CPU)、图形处理器(GPU)、Cell类型架构以及数字信号处理器(DSP)等其他并行处理器,在 游戏 、 娱乐 、科研、医疗等各种领域都有广阔的发展前景。
(5)分析框架Hive
Hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,并提供简单的sql查询功能,可以将sql语句转换为MapReduce任务进行运行。 其优点是学习成本低,可以通过类SQL语句快速实现简单的MapReduce统计,不必开发专门的MapReduce应用,十分适合数据仓库的统计分析。
(6)分析框架Pig
Apache Pig 是apache平台下的一个免费开源项目,Pig为大型数据集的处理提供了更高层次的抽象,很多时候数据的处理需要多个MapReduce过程才能实现,使得数据处理过程与该模式匹配可能很困难。有了Pig就能够使用更丰富的数据结构。
Pig LatinPig Latin 是一个相对简单的语言,一条语句 就是一个操作,与数据库的表类似,可以在关系数据库中找到它(其中,元组代表行,并且每个元组都由字段组成)。
spark查询关系型数据库优化的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于spark查询关系型数据库优化,Spark 查询优化:提升关系型数据库性能,大数据三大核心技术:拿数据、算数据、卖数据!,漫谈工业大数据9:开源工业大数据软件简介(上)的信息别忘了在本站进行查找喔。
创新互联成都网站建设公司提供专业的建站服务,为您量身定制,欢迎来电(028-86922220)为您打造专属于企业本身的网络品牌形象。
成都创新互联品牌官网提供专业的网站建设、设计、制作等服务,是一家以网站建设为主要业务的公司,在网站建设、设计和制作领域具有丰富的经验。
本文名称:Spark查询优化:提升关系型数据库性能(spark查询关系型数据库优化)
文章URL:http://www.shufengxianlan.com/qtweb/news26/145976.html
网站建设、网络推广公司-创新互联,是专注品牌与效果的网站制作,网络营销seo公司;服务项目有等
声明:本网站发布的内容(图片、视频和文字)以用户投稿、用户转载内容为主,如果涉及侵权请尽快告知,我们将会在第一时间删除。文章观点不代表本网站立场,如需处理请联系客服。电话:028-86922220;邮箱:631063699@qq.com。内容未经允许不得转载,或转载时需注明来源: 创新互联