图像类型:通常我们的数字图像是彩色的3通道RGB图像,R代表红色,G代表绿色,B代表蓝色。
目前创新互联公司已为成百上千家的企业提供了网站建设、域名、网页空间、网站托管、服务器托管、企业网站设计、河源网站维护等服务,公司将坚持客户导向、应用为本的策略,正道将秉承"和谐、参与、激情"的文化,与客户和合作伙伴齐心协力一起成长,共同发展。
存储方式:通常是uint8 无符号整数,0~255,当然也有24bits 可以表示更多的颜色,虽然这样做可以提高图像对于现实世界的一个还原度,但是会增加更多的开销,因此我们通常还是用8bits
灰度图像:灰度图像在图像处理种有着非常重要的地位,一些常用的操作都会涉及到灰度图像的转换,边缘检测、二值化等这些操作之前通常都是RGB to Gray。
直接给出公式:Gray = 0.2989*R+0.5870*G+0.1140*B
#python Opencv #导入头文件 %matplotlib inline import matplotlib.pyplot as plt import cv2 import numpy as np #读取图像,opencv读取图像通道顺序为BGR img=cv2.imread('img.path.jpg') #显示图像,其中.astype(np.uint8)为了确保数据格式以免无法显示,plt显示图像需要为RGB顺序 plt.figure(figsize=(15,10)) plt.imshow(cv2.cvtColor(img.astype(np.uint8), cv2.COLOR_BGR2RGB)) plt.show()
img=0.2989*img[:,:,2]+0.5870*img[:,:,1]+0.1140*img[:,:,0] ###### plt.figure(figsize=(15,10)) plt.imshow(img, cmap ='gray') plt.show()
#opencv 自带函数进行转化 plt.figure(figsize=(15,10)) plt.imshow(cv2.cvtColor(img.astype(np.uint8), cv2.COLOR_BGR2GRAY),cmap='gray') plt.show()
img3=0.2989*img[:,:,2]+0.5870*img[:,:,1]+0.1140*img[:,:,0] img2=cv2.cvtColor(img.astype(np.uint8), cv2.COLOR_BGR2GRAY) print((img3-img2).sum()/(img.shape[0]*img.shape[1])) ###结果=-0.0072855376781315
对比下,自己用公式得到的灰度图和opencv自己函数的灰度图,其实还是不一样的,应该是计算精度上的差距
网站名称:创新互联Python教程:python如何分析灰度
本文来源:http://www.shufengxianlan.com/qtweb/news27/550577.html
网站建设、网络推广公司-创新互联,是专注品牌与效果的网站制作,网络营销seo公司;服务项目有等
声明:本网站发布的内容(图片、视频和文字)以用户投稿、用户转载内容为主,如果涉及侵权请尽快告知,我们将会在第一时间删除。文章观点不代表本网站立场,如需处理请联系客服。电话:028-86922220;邮箱:631063699@qq.com。内容未经允许不得转载,或转载时需注明来源: 创新互联