SpringBatch真是个优秀的批处理框架,用完爱不释手!

1 前言

站在用户的角度思考问题,与客户深入沟通,找到锦州网站设计与锦州网站推广的解决方案,凭借多年的经验,让设计与互联网技术结合,创造个性化、用户体验好的作品,建站类型包括:成都网站制作、做网站、外贸营销网站建设、企业官网、英文网站、手机端网站、网站推广、域名注册、网络空间、企业邮箱。业务覆盖锦州地区。

Spring Batch是一个轻量级的、完善的批处理框架,作为Spring体系中的一员,它拥有灵活、方便、生产可用的特点。在应对高效处理大量信息、定时处理大量数据等场景十分简便。

结合调度框架能更大地发挥Spring Batch的作用。

2 Spring Batch的概念知识

2.1 分层架构

Spring Batch的分层架构图如下:

通过例子讲解Spring Batch入门,优秀的批处理框架

可以看到它分为三层,分别是:

  •  Application应用层:包含了所有任务batch jobs和开发人员自定义的代码,主要是根据项目需要开发的业务流程等。
  •  Batch Core核心层:包含启动和管理任务的运行环境类,如JobLauncher等。
  •  Batch Infrastructure基础层:上面两层是建立在基础层之上的,包含基础的读入reader和写出writer、重试框架等。

2.2 关键概念

理解下图所涉及的概念至关重要,不然很难进行后续开发和问题分析。

通过例子讲解Spring Batch入门,优秀的批处理框架

2.2.1 JobRepository

专门负责与数据库打交道,对整个批处理的新增、更新、执行进行记录。所以Spring Batch是需要依赖数据库来管理的。

2.2.2 任务启动器JobLauncher

负责启动任务Job。

2.2.3 任务Job

Job是封装整个批处理过程的单位,跑一个批处理任务,就是跑一个Job所定义的内容。

通过例子讲解Spring Batch入门,优秀的批处理框架

上图介绍了Job的一些相关概念:

  •  Job:封装处理实体,定义过程逻辑。
  •  JobInstance:Job的运行实例,不同的实例,参数不同,所以定义好一个Job后可以通过不同参数运行多次。
  •  JobParameters:与JobInstance相关联的参数。
  •  JobExecution:代表Job的一次实际执行,可能成功、可能失败。

所以,开发人员要做的事情,就是定义Job。

2.2.4 步骤Step

Step是对Job某个过程的封装,一个Job可以包含一个或多个Step,一步步的Step按特定逻辑执行,才代表Job执行完成。

通过例子讲解Spring Batch入门,优秀的批处理框架

通过定义Step来组装Job可以更灵活地实现复杂的业务逻辑。

2.2.5 输入——处理——输出

所以,定义一个Job关键是定义好一个或多个Step,然后把它们组装好即可。而定义Step有多种方法,但有一种常用的模型就是输入——处理——输出,即Item Reader、Item Processor和Item Writer。比如通过Item Reader从文件输入数据,然后通过Item Processor进行业务处理和数据转换,最后通过Item Writer写到数据库中去。

Spring Batch为我们提供了许多开箱即用的Reader和Writer,非常方便。

3 代码实例

理解了基本概念后,就直接通过代码来感受一下吧。整个项目的功能是从多个csv文件中读数据,处理后输出到一个csv文件。

3.1 基本框架

添加依赖:

 
 
 
 
  1.  
  2.   org.springframework.boot 
  3.   spring-boot-starter-batch 
  4.  
  5.  
  6.   com.h2database 
  7.   h2 
  8.   runtime 

需要添加Spring Batch的依赖,同时使用H2作为内存数据库比较方便,实际生产肯定是要使用外部的数据库,如Oracle、PostgreSQL。

入口主类:

 
 
 
 
  1. @SpringBootApplication 
  2. @EnableBatchProcessing 
  3. public class PkslowBatchJobMain { 
  4.     public static void main(String[] args) { 
  5.         SpringApplication.run(PkslowBatchJobMain.class, args); 
  6.     }
  7.  }

也很简单,只是在Springboot的基础上添加注解@EnableBatchProcessing。

领域实体类Employee:

 
 
 
 
  1. package com.pkslow.batch.entity; 
  2. public class Employee { 
  3.     String id; 
  4.     String firstName; 
  5.     String lastName; 
  6. }

对应的csv文件内容如下:

 
 
 
 
  1. id,firstName,lastName 
  2. 1,Lokesh,Gupta 
  3. 2,Amit,Mishra 
  4. 3,Pankaj,Kumar 
  5. 4,David,Miller

3.2 输入——处理——输出

3.2.1 读取ItemReader

因为有多个输入文件,所以定义如下:

 
 
 
 
  1. @Value("input/inputData*.csv") 
  2. private Resource[] inputResources; 
  3. @Bean 
  4. public MultiResourceItemReader multiResourceItemReader() 
  5. {
  6.   MultiResourceItemReader resourceItemReader = new MultiResourceItemReader(); 
  7.   resourceItemReader.setResources(inputResources); 
  8.   resourceItemReader.setDelegate(reader());
  9.   return resourceItemReader; 
  10. @Bean
  11. public FlatFileItemReader reader() 
  12.   FlatFileItemReader reader = new FlatFileItemReader(); 
  13.   //跳过csv文件第一行,为表头 
  14.   reader.setLinesToSkip(1); 
  15.   reader.setLineMapper(new DefaultLineMapper() { 
  16.     { 
  17.       setLineTokenizer(new DelimitedLineTokenizer() { 
  18.         { 
  19.           //字段名
  20.            setNames(new String[] { "id", "firstName", "lastName" }); 
  21.         } 
  22.       }); 
  23.       setFieldSetMapper(new BeanWrapperFieldSetMapper() { 
  24.         { 
  25.           //转换化后的目标类 
  26.           setTargetType(Employee.class); 
  27.         } 
  28.       }); 
  29.     } 
  30.   }); 
  31.   return reader; 
  32. }

这里使用了FlatFileItemReader,方便我们从文件读取数据。

3.2.2 处理ItemProcessor

为了简单演示,处理很简单,就是把最后一列转为大写:

 
 
 
 
  1. public ItemProcessor itemProcessor() { 
  2.   return employee -> { 
  3.     employee.setLastName(employee.getLastName().toUpperCase());
  4.      return employee; 
  5.   }; 
  6. }

3.2.3 输出ItremWriter

比较简单,代码及注释如下:

 
 
 
 
  1. private Resource outputResource = new FileSystemResource("output/outputData.csv"); 
  2. @Bean 
  3. public FlatFileItemWriter writer() 
  4.   FlatFileItemWriter writer = new FlatFileItemWriter<>(); 
  5.   writer.setResource(outputResource); 
  6.   //是否为追加模式
  7.    writer.setAppendAllowed(true); 
  8.   writer.setLineAggregator(new DelimitedLineAggregator() { 
  9.     { 
  10.       //设置分割符
  11.        setDelimiter(","); 
  12.       setFieldExtractor(new BeanWrapperFieldExtractor() { 
  13.         { 
  14.           //设置字段 
  15.           setNames(new String[] { "id", "firstName", "lastName" }); 
  16.         } 
  17.       }); 
  18.     } 
  19.   }); 
  20.   return writer; 
  21. }

3.3 Step

有了Reader-Processor-Writer后,就可以定义Step了:

 
 
 
 
  1. @Bean 
  2. public Step csvStep() { 
  3.   return stepBuilderFactory.get("csvStep").chunk(5) 
  4.     .reader(multiResourceItemReader()) 
  5.     .processor(itemProcessor()) 
  6.     .writer(writer()) 
  7.     .build(); 
  8. }

这里有一个chunk的设置,值为5,意思是5条记录后再提交输出,可以根据自己需求定义。

3.4 Job

完成了Step的编码,定义Job就容易了:

 
 
 
 
  1. @Bean 
  2. public Job pkslowCsvJob() { 
  3.   return jobBuilderFactory 
  4.     .get("pkslowCsvJob") 
  5.     .incrementer(new RunIdIncrementer()) 
  6.     .start(csvStep()) 
  7.     .build(); 
  8. }

3.5 运行

完成以上编码后,执行程序,结果如下:

通过例子讲解Spring Batch入门,优秀的批处理框架

成功读取数据,并将最后字段转为大写,并输出到outputData.csv文件。

4 监听Listener

可以通过Listener接口对特定事件进行监听,以实现更多业务功能。比如如果处理失败,就记录一条失败日志;处理完成,就通知下游拿数据等。

我们分别对Read、Process和Write事件进行监听,对应分别要实现ItemReadListener接口、ItemProcessListener接口和ItemWriteListener接口。因为代码比较简单,就是打印一下日志,这里只贴出ItemWriteListener的实现代码:

 
 
 
 
  1. public class PkslowWriteListener implements ItemWriteListener { 
  2.     private static final Log logger = LogFactory.getLog(PkslowWriteListener.class); 
  3.     @Override 
  4.     public void beforeWrite(List list) { 
  5.         logger.info("beforeWrite: " + list); 
  6.     } 
  7.     @Override 
  8.     public void afterWrite(List list) { 
  9.         logger.info("afterWrite: " + list); 
  10.     } 
  11.     @Override 
  12.     public void onWriteError(Exception e, List list) { 
  13.         logger.info("onWriteError: " + list); 
  14.     } 
  15. }

把实现的监听器listener整合到Step中去:

 
 
 
 
  1. @Bean 
  2. public Step csvStep() { 
  3.   return stepBuilderFactory.get("csvStep").chunk(5) 
  4.     .reader(multiResourceItemReader()) 
  5.     .listener(new PkslowReadListener()) 
  6.     .processor(itemProcessor()) 
  7.     .listener(new PkslowProcessListener()) 
  8.     .writer(writer()) 
  9.     .listener(new PkslowWriteListener()) 
  10.     .build(); 
  11. }

执行后看一下日志:

通过例子讲解Spring Batch入门,优秀的批处理框架

这里就能明显看到之前设置的chunk的作用了。Writer每次是处理5条记录,如果一条输出一次,会对IO造成压力。

5 总结

Spring Batch还有许多优秀的特性,如面对大量数据时的并行处理。本文主要入门介绍为主,不一一介绍,后续会专门讲解。

本文标题:SpringBatch真是个优秀的批处理框架,用完爱不释手!
链接分享:http://www.shufengxianlan.com/qtweb/news29/172079.html

成都网站建设公司_创新互联,为您提供品牌网站建设标签优化软件开发网站内链网站制作动态网站

广告

声明:本网站发布的内容(图片、视频和文字)以用户投稿、用户转载内容为主,如果涉及侵权请尽快告知,我们将会在第一时间删除。文章观点不代表本网站立场,如需处理请联系客服。电话:028-86922220;邮箱:631063699@qq.com。内容未经允许不得转载,或转载时需注明来源: 创新互联