除非你能学习到一些东西,否则不要重复造轮子。
创新互联一直通过网站建设和网站营销帮助企业获得更多客户资源。 以"深度挖掘,量身打造,注重实效"的一站式服务,以做网站、网站制作、移动互联产品、营销型网站建设服务为核心业务。十载网站制作的经验,使用新网站建设技术,全新开发出的标准网站,不但价格便宜而且实用、灵活,特别适合中小公司网站制作。网站管理系统简单易用,维护方便,您可以完全操作网站资料,是中小公司快速网站建设的选择。
强大的库已经存在了,如:TensorFlow,PyTorch,Keras等等。我将介绍在Python中创建多层感知器(MLP)神经网络的基本知识。
感知器是神经网络的基本组成部分。感知器的输入函数是权重,偏差和输入数据的线性组合。具体来说:in_j = weight input + bias.(in_j =权重输入+偏差)。在每个感知器上,我们都可以指定一个激活函数g。
激活函数是一种确保感知器“发射”或仅在达到一定输入水平后才激活的数学方法。常见的非线性激活函数为S型,softmax,整流线性单位(ReLU)或简单的tanH。
激活函数有很多选项,但是在本文中我们仅涉及Sigmoid和softmax。
图1:感知器
对于有监督的学习,我们稍后将输入的数据通过一系列隐藏层转发到输出层。这称为前向传播。在输出层,我们能够输出预测y。通过我们的预测y,我们可以计算误差| y*-y | 并使误差通过神经网络向后传播。这称为反向传播。通过随机梯度下降(SGD)过程,将更新隐藏层中每个感知器的权重和偏差。
图2:神经网络的基本结构
现在我们已经介绍了基础知识,让我们实现一个神经网络。我们的神经网络的目标是对MNIST数据库中的手写数字进行分类。我将使用NumPy库进行基本矩阵计算。
在我们的问题中,MNIST数据由 [748,1] 矩阵中的8位颜色通道表示。从本质上讲,我们有一个 [748,1] 的数字矩阵,其始于[0,1,.... 255],其中0表示白色,255表示黑色。
结果
MNIST手写数字数据库包含60,000个用于训练目的的手写示例和10,000个用于测试目的的示例。在对60,000个示例进行了30个epoch的训练之后,我在测试数据集上运行了经过训练的神经网络,并达到了93.2%的准确性。甚至可以通过调整超参数来进一步优化。
它是如何工作的?
本文分为5个部分。这些部分是:
1. 激活函数
Sigmoid是由等式1 /(1+ exp(-x))定义的激活函数,将在隐藏层感知器中使用。
Softmax是一个激活函数,当我们要将输入分为几类时,它通常在输出层中使用。在我们的例子中,我们希望将一个数字分成10个bucket[0,1,2,…,9]中的一个。它计算矩阵中每个条目的概率;概率将总计为1。具有最大概率的条目将对应于其预测,即0,1,…,9。Softmax定义为exp(x)/ sum(exp(x))。
图3:激活函数的实现
2. 权重初始化
对于我们的每个隐藏层,我们将需要初始化权重矩阵。有几种不同的方法可以做到这一点,这里是4。
零初始化-初始化所有权重= 0。
随机初始化-使用随机数初始化权重,而不是完全随机。我们通常使用标准正态分布(均值0和方差1)中的随机数。
Xavier初始化-使用具有设定方差的正态分布中的随机数初始化权重。我们将基于上一层的大小设置方差。
如上所述,进入感知器的边缘乘以权重矩阵。关键的一点是,矩阵的大小取决于当前图层的大小以及它之前的图层。明确地,权重矩阵的大小为[currentLayerSize,previousLayerSize]。
如上所述,进入感知器的边缘乘以权重矩阵。关键的一点是,矩阵的大小取决于当前图层的大小以及它之前的图层。明确地,权重矩阵的大小为[currentLayerSize,previousLayerSize]。
假设我们有一个包含100个节点的隐藏层。我们的输入层的大小为[748,1],而我们所需的输出层的大小为[10,1]。输入层和第一个隐藏层之间的权重矩阵的大小为[100,748]。隐藏层之间的每个权重矩阵的大小为[100,100]。最后,最终隐藏层和输出层之间的权重矩阵的大小为[10,100]。
出于教育目的,我们将坚持使用单个隐藏层;在最终模型中,我们将使用多层。
图4:权重初始化实现
3. 偏差初始化
像权重初始化一样,偏置矩阵的大小取决于图层大小,尤其是当前图层大小。偏置初始化的一种方法是将偏置设置为零。
对于我们的实现,我们将需要为每个隐藏层和输出层提供一个偏差。偏置矩阵的大小为[100,1],基于每个隐藏层100个节点,而输出层的大小为[10,1]。
图5:偏置初始化实现
4. 训练算法
前面已经说过,训练是基于随机梯度下降(SGD)的概念。在SGD中,我们一次只考虑一个训练点。
在我们的示例中,我们将在输出层使用softmax激活。将使用“交叉熵损失”公式来计算损失。对于SGD,我们将需要使用softmax来计算交叉熵损失的导数。也就是说,此导数减少为y -y,即预测y减去期望值y。
图6:关于softmax激活的交叉熵损失及其导数
我们还需要编写S型激活函数的导数。在图7中,我定义了S型函数及其衍生函数
图7:Sigmoid函数(上)及其导数(下)
通常,神经网络将允许用户指定几个“超参数”。在我们的实施中,我们将着重于允许用户指定epoch,批处理大小,学习率和动量。还有其他优化技术!
下面,我编写了一些通用的伪代码来模拟反向传播学习算法的概况。为了便于阅读,已将诸如计算输出和将训练数据分成批次之类的任务作为注释编写。
现在,我们将展示伪代码的实现.
5. 做出预测
现在,我们仅缺少此实现的一个关键方面。预测算法。在编写反向传播算法的过程中,我们已经完成了大部分工作。我们只需要使用相同的前向传播代码即可进行预测。输出层的softmax激活函数将计算大小为[10,1]的矩阵中每个条目的概率。
我们的目标是将数字分类为0到9。因此,aj2矩阵的索引将与预测相对应。概率最大的索引将由np.argmax()选择,并将作为我们的预测。
结论
这就对了!我们结束了。我们已经用Python编写了神经网络的实现。
但是,我们如何选择最佳参数?我们可以使用算法的一般知识来选择有意义的超参数。我们需要选择能概括但不能过度拟合数据的超参数。我们可以调整动量,学习率,时期数,批处理大小和隐藏节点的数量,以实现我们的目标。向前迈出一步,我们可以编写更多算法来为我们做这件事!
遗传算法是一种AI算法,可用于选择最佳参数。遗传算法的思想是创建一组具有不同参数的子代,并让他们产生与参数相关的测试错误。我们可以对具有最佳超参数的神经网络进行繁殖和变异,以找到性能更好的参数。花费大量时间后,我们将能够学习有关超参数情况的大量知识,并找到新的最佳超参数值。
我们还可以采取其他措施来减少测试错误吗?是的,我们可以缩放输入数据。像许多算法一样,数量更多会对算法的结果产生重大影响。在我们的示例中,数字范围为[0到255]。如果我们按比例缩放数字,使它们的范围从[0到1],则可以减少该偏差。
本文标题:用Python实现多层感知器神经网络
网站链接:http://www.shufengxianlan.com/qtweb/news29/87779.html
网站建设、网络推广公司-创新互联,是专注品牌与效果的网站制作,网络营销seo公司;服务项目有等
声明:本网站发布的内容(图片、视频和文字)以用户投稿、用户转载内容为主,如果涉及侵权请尽快告知,我们将会在第一时间删除。文章观点不代表本网站立场,如需处理请联系客服。电话:028-86922220;邮箱:631063699@qq.com。内容未经允许不得转载,或转载时需注明来源: 创新互联