提升性能、空间、安全性:数据库优化全方位解析(数据库优化包括)

在现代科技时代中,数据库系统是每个公司的重要数据管理工具。无论是大型企业还是小型企业,数据库系统都有其极其重要的地位,数据库不仅仅是单纯的存储数据的工具,更是公司发展过程中重要的信息管理工具。然而,随着数据库规模的扩大和数据量的增加,数据库优化也越来越引起广泛关注。本篇文章将告诉您如何提升性能、空间、安全性,并全方位解析数据库优化的必要性。

创新互联是一家企业级云计算解决方案提供商,超15年IDC数据中心运营经验。主营GPU显卡服务器,站群服务器,四川电信机房托管,海外高防服务器,机柜大带宽,动态拨号VPS,海外云手机,海外云服务器,海外服务器租用托管等。

什么是数据库优化?

在谈论优化之前,我们必须先了解什么是数据库。数据库是一个电子系统,其中包含操作系统和应用程序软件,旨在存储和管理企业数据。数据库优化是一种改进数据库系统性能的过程,以使其更快,更安全,更可靠。数据库中的优化并不是一项单一的任务,而是一系列任务,这些任务需要针对特定的性能目标进行优化。

数据库优化的好处

在今天的数码时代中,数据库被广泛应用于各个领域。充足的数据能够让企业在经营上走得更加稳定,因此数据库的重要性也日益显现。数据库优化有助于改善系统性能、减少数据恢复时间、提高数据可用性、节省成本以及保护企业数据。

提升数据库性能

数据库性能是评估数据库有效性的关键指标之一。光速访问和数据加速的需求使得优化数据库性能成为企业的首要任务。性能优化可以通过以下多种方式来实现:

1.索引优化:索引是管理数据库的重要工具,索引优化可以加速查询数据的速度。

2.查询优化:这是提高查询性能的关键。查询优化可以通过调整查询方式的方法来优化性能。

3.缓存优化:缓存优化可以避免无谓的查询操作,减少数据库的负载。缓存是一个由操作系统管理的物理内存块,使得数据可以更快地存储和访问。

4.数据分区:把数据分割成多个分区,可以使查询速度更快,同时减轻数据库负载。

5.负载均衡:这可以提高系统的可伸缩性和效率,可以将负载平均分配到多个数据库中。

提高数据库空间

扩大数据库空间可以提高数据容量。通常,数据库空间被限制在一定的空间大小内,如果已经用满、而且无法扩大空间的话,那么就需要优化数据库。以下是一些提高容量的方法。

1.压缩数据:压缩数据是一种节省空间的方法。对于数字类型的数据,这种方式比对字符串类型数据更加有效。

2.不使用日志:禁用日志或删除日志可以减少磁盘空间的占用。

3.移除冗余数据:移除无用的数据、归档旧数据以及被重复的数据是优化存储空间的有效方法。

加强数据库安全

数据库安全是每个企业都需要考虑的问题。数据泄露和黑客攻击可以导致沉重的损失,包括信息泄露、资金损失、声誉受损等。以下是一些提高数据库安全性的方法。

1.授权和访问控制:管理数据库的用户名和密码应该合理地分配给需要访问的用户。

2.数据加密:受密码保护或加密后的数据是维护数据私密性的有效方法。

3.定期备份和还原:定期备份数据是减轻数据丢失和恢复操作的重要方案。

结语

数据库优化是为了更大化数据库系统的效率和可靠性。一些技术经常被用于数据库优化,但对于不同的数据库来说,需要一个定制的战略。当您决定要对数据库进行优化时,请确保参考以上方法来确定优化方案的更佳选择,并实施适当的措施以保证数据的可靠性和安全性。

相关问题拓展阅读:

  • 谁知道数据库优化设计方案有哪些?
  • mysql数据库怎么优化,有几方面的优化?
  • 数据库优化是什么意思?

谁知道数据库优化设计方案有哪些?

本文首先讨论了基于第三范式的数据库表的基本设计,着重论述了建立主键和索引的策略和方案,然后从数据库表的扩展设计和库表对象的放置等角度概述了数据库管理系统的优化方案。

关键词: 优化(Optimizing) 第三范式(3NF) 冗余数据(Redundant Data) 索引(Index) 数据分割(Data Partitioning) 对象放置(Object Placement)

1 引言

数据库优化的目标无非是避免磁盘I/O瓶颈、减少CPU利用率和减少资源竞争。为了便于读者阅读和理解,笔者参阅了Sybase、Informix和Oracle等大型数据库系统参考资料,基于多年的工程实践经验,从基本表设计、扩展设计和数据库表对象放置等角度进行讨论,着重讨论了如何避免磁盘I/O瓶颈和减少资源竞争,相信读者会一目了然。

2 基于第三范式的基本表设计

在基于表驱动的信息管理系统(MIS)中,基本表的设计规范是第三范式(3NF)。第三范式的基本特征是非主键属性只依赖于主键属性。基于第三范式的数据库表设计具有很多优点:一是消除了冗余数据,节省了磁盘存储空间;二是有良好的数据完整性限制,即基于主外键的参照完整限制和基于主键的实体完整性限制,这使得数据容易维护,也容易移植和更新;三是数据的可逆性好,在做连接(Join)查询或者合并表时不遗漏、也不重复;四是因消除了冗余数据(冗余列),在查询(Select)时每个数据页存的数据行就多,这样就有效地减少了逻辑I/O,每个Cash存的页面就多,也减少物理I/O;五是对大多数事务(Transaction)而言,运行性能好;六是物理设计(Physical Design)的机动性较大,能满足日益增长的用户需求。

在基本表设计中,表的主键、外键、索引设计占有非常重要的地位,但系统设计人员往往只注重于满足用户要求,而没有从系统优化的高度来认识和重视它们。实际上,它们与系统的运行性能密切相关。现在从系统数据库优化角度讨论这些基本概念及其重早迹纯要意义:

(1)主键(Primary Key):主键被用于复杂的SQL语句时,频繁地在数据访问中被用到。一个表只有一个主键。主键应该有固定值(不能为Null或缺省值,要有相对稳定性),不含代码信息,易访问。把常用(众所周知)的列作为主键才有意义。短主键更佳(小于25bytes),主键的长短影响索引的大小,索引的大小影响索引页的大小,从而影响磁盘I/O。主键分为自然主键和人为主键。自然主键由实体的属性构成,自然主键可以是复合性的,在形成复合主键时,主键列不能太多,复合主键使得Join*作复杂化、也增加了外键表的大小。人为主键是,在没有合适的自然属性键、或自然属性复杂或灵敏度高时,人为形成的。人为主键一般是整型值(满足最小化要求),没有实际意义,也略微增加了表的大小;但减少了把它作为外键的表的大小。

(2)外键(Foreign Key):外键的作用是建立关系型数据库中表之间的关系(参照完整性),主键只能从独立的实体迁移到非独立的实体,成为后者的一个属性,被称为外键。

(3)索引(Index):利用索引优化系统性能是显而易见的,对所有常用于查询中的Where子句的列和所有用于排序的列创建索引,可以避免整表扫描或访问,在不改变表的物理结构的情况下,直接访问特定的数据列,这样减少数据存取时间;利用索引可以优化或排除耗时的分类*作;把数据分散到不同的页面上,就分散了插入的数据;主键自动建立了唯一索引,因此唯一索引也能确保数据的唯一性(即实体完整性);索引码越小,定位就越直接;新建的索引效能更好,因此定期更新索引非常必要。索引也有代价:有空间开销,建立它也要花费时间,在进行Insert、Delete和Update*作时,也有维护代价。索引有两种:聚陆咐族索引和非聚族索引。一个表只能有一个聚族索引,可有多个非聚族索引。使用聚族索引查询数据要比使用非聚族索引快。在建索引前,应利用数据库系统函数估算索引的大小。

① 聚族索引(Clustered Index):聚族索引的数据页按物理有序储存,占用空间小。选择策略是,被用于Where子句的列:包括范围查询、模糊查询或高度重复的列(连续磁盘扫描);被用于连接Join*作的列;被用于Order by和Group by子句的列。聚族索引不利于插入*作,另外没有必要用主键建聚族索州洞引。

② 非聚族索引(Nonclustered Index):与聚族索引相比,占用空间大,而且效率低。选择策略是,被用于Where子句的列:包括范围查询、模糊查询(在没有聚族索引时)、主键或外键列、点(指针类)或小范围(返回的结果域小于整表数据的20%)查询;被用于连接Join*作的列、主键列(范围查询);被用于Order by和Group by子句的列;需要被覆盖的列。对只读表建多个非聚族索引有利。索引也有其弊端,一是创建索引要耗费时间,二是索引要占有大量磁盘空间,三是增加了维护代价(在修改带索引的数据列时索引会减缓修改速度)。那么,在哪种情况下不建索引呢?对于小表(数据小于5页)、小到中表(不直接访问单行数据或结果集不用排序)、单值域(返回值密集)、索引列值太长(大于20bitys)、容易变化的列、高度重复的列、Null值列,对没有被用于Where子语句和Join查询的列都不能建索引。另外,对主要用于数据录入的,尽可能少建索引。当然,也要防止建立无效索引,当Where语句中多于5个条件时,维护索引的开销大于索引的效益,这时,建立临时表存储有关数据更有效。

批量导入数据时的注意事项:在实际应用中,大批量的计算(如电信话单计费)用C语言程序做,这种基于主外键关系数据计算而得的批量数据(文本文件),可利用系统的自身功能函数(如Sybase的BCP命令)快速批量导入,在导入数据库表时,可先删除相应库表的索引,这有利于加快导入速度,减少导入时间。在导入后再重建索引以便优化查询。

(4)锁:锁是并行处理的重要机制,能保持数据并发的一致性,即按事务进行处理;系统利用锁,保证数据完整性。因此,我们避免不了死锁,但在设计时可以充分考虑如何避免长事务,减少排它锁时间,减少在事务中与用户的交互,杜绝让用户控制事务的长短;要避免批量数据同时执行,尤其是耗时并用到相同的数据表。锁的征用:一个表同时只能有一个排它锁,一个用户用时,其它用户在等待。若用户数增加,则Server的性能下降,出现“假死”现象。如何避免死锁呢?从页级锁到行级锁,减少了锁征用;给小表增加无效记录,从页级锁到行级锁没有影响,若在同一页内竞争有影响,可选择合适的聚族索引把数据分配到不同的页面;创建冗余表;保持事务简短;同一批处理应该没有网络交互。

(5)查询优化规则:在访问数据库表的数据(Access Data)时,要尽可能避免排序(Sort)、连接(Join)和相关子查询*作。经验告诉我们,在优化查询时,必须做到:

① 尽可能少的行;

② 避免排序或为尽可能少的行排序,若要做大量数据排序,更好将相关数据放在临时表中*作;用简单的键(列)排序,如整型或短字符串排序;

③ 避免表内的相关子查询;

④ 避免在Where子句中使用复杂的表达式或非起始的子字符串、用长字符串连接;

⑤ 在Where子句中多使用“与”(And)连接,少使用“或”(Or)连接;

⑥ 利用临时数据库。在查询多表、有多个连接、查询复杂、数据要过滤时,可以建临时表(索引)以减少I/O。但缺点是增加了空间开销。

除非每个列都有索引支持,否则在有连接的查询时分别找出两个动态索引,放在工作表中重新排序。

3 基本表扩展设计

基于第三范式设计的库表虽然有其优越性(见本文之一部分),然而在实际应用中有时不利于系统运行性能的优化:如需要部分数据时而要扫描整表,许多过程同时竞争同一数据,反复用相同行计算相同的结果,过程从多表获取数据时引发大量的连接*作,当数据来源于多表时的连接*作;这都消耗了磁盘I/O和CPU时间。

尤其在遇到下列情形时,我们要对基本表进行扩展设计:许多过程要频繁访问一个表、子集数据访问、重复计算和冗余数据,有时用户要求一些过程优先或低的响应时间。

如何避免这些不利因素呢?根据访问的频繁程度对相关表进行分割处理、存储冗余数据、存储衍生列、合并相关表处理,这些都是克服这些不利因素和优化系统运行的有效途径。

3.1 分割表或储存冗余数据

分割表分为水平分割表和垂直分割表两种。分割表增加了维护数据完整性的代价。

水平分割表:一种是当多个过程频繁访问数据表的不同行时,水平分割表,并消除新表中的冗余数据列;若个别过程要访问整个数据,则要用连接*作,这也无妨分割表;典型案例是电信话单按月分割存放。另一种是当主要过程要重复访问部分行时,更好将被重复访问的这些行单独形成子集表(冗余储存),这在不考虑磁盘空间开销时显得十分重要;但在分割表以后,增加了维护难度,要用触发器立即更新、或存储过程或应用代码批量更新,这也会增加额外的磁盘I/O开销。

垂直分割表(不破坏第三范式),一种是当多个过程频繁访问表的不同列时,可将表垂直分成几个表,减少磁盘I/O(每行的数据列少,每页存的数据行就多,相应占用的页就少),更新时不必考虑锁,没有冗余数据。缺点是要在插入或删除数据时要考虑数据的完整性,用存储过程维护。另一种是当主要过程反复访问部分列时,更好将这部分被频繁访问的列数据单独存为一个子集表(冗余储存),这在不考虑磁盘空间开销时显得十分重要;但这增加了重叠列的维护难度,要用触发器立即更新、或存储过程或应用代码批量更新,这也会增加额外的磁盘I/O开销。垂直分割表可以达到更大化利用Cache的目的。

总之,为主要过程分割表的方法适用于:各个过程需要表的不联结的子集,各个过程需要表的子集,访问频率高的主要过程不需要整表。在主要的、频繁访问的主表需要表的子集而其它主要频繁访问的过程需要整表时则产生冗余子集表。

注意,在分割表以后,要考虑重新建立索引。

3.2 存储衍生数据

对一些要做大量重复性计算的过程而言,若重复计算过程得到的结果相同(源列数据稳定,因此计算结果也不变),或计算牵扯多行数据需额外的磁盘I/O开销,或计算复杂需要大量的CPU时间,就考虑存储计算结果(冗余储存)。现予以分类说明:

若在一行内重复计算,就在表内增加列存储结果。但若参与计算的列被更新时,必须要用触发器更新这个新列。

若对表按类进行重复计算,就增加新表(一般而言,存放类和结果两列就可以了)存储相关结果。但若参与计算的列被更新时,就必须要用触发器立即更新、或存储过程或应用代码批量更新这个新表。

若对多行进行重复性计算(如排名次),就在表内增加列存储结果。但若参与计算的列被更新时,必须要用触发器或存储过程更新这个新列。

总之,存储冗余数据有利于加快访问速度;但违反了第三范式,这会增加维护数据完整性的代价,必须用触发器立即更新、或存储过程或应用代码批量更新,以维护数据的完整性。

3.3 消除昂贵结合

对于频繁同时访问多表的一些主要过程,考虑在主表内存储冗余数据,即存储冗余列或衍生列(它不依赖于主键),但破坏了第三范式,也增加了维护难度。在源表的相关列发生变化时,必须要用触发器或存储过程更新这个冗余列。当主要过程总同时访问两个表时可以合并表,这样可以减少磁盘I/O*作,但破坏了第三范式,也增加了维护难度。对父子表和1:1关系表合并方法不同:合并父子表后,产生冗余表;合并1:1关系表后,在表内产生冗余数据。

4 数据库对象的放置策略

数据库对象的放置策略是均匀地把数据分布在系统的磁盘中,平衡I/O访问,避免I/O瓶颈。

⑴ 访问分散到不同的磁盘,即使用户数据尽可能跨越多个设备,多个I/O运转,避免I/O竞争,克服访问瓶颈;分别放置随机访问和连续访问数据。

⑵ 分离系统数据库I/O和应用数据库I/O。把系统审计表和临时库表放在不忙的磁盘上。

⑶ 把事务日志放在单独的磁盘上,减少磁盘I/O开销,这还有利于在障碍后恢复,提高了系统的安全性。

⑷ 把频繁访问的“活性”表放在不同的磁盘上;把频繁用的表、频繁做Join*作的表分别放在单独的磁盘上,甚至把把频繁访问的表的字段放在不同的磁盘上,把访问分散到不同的磁盘上,避免I/O争夺;

⑸ 利用段分离频繁访问的表及其索引(非聚族的)、分离文本和图像数据。段的目的是平衡I/O,避免瓶颈,增加吞吐量,实现并行扫描,提高并发度,更大化磁盘的吞吐量。利用逻辑段功能,分别放置“活性”表及其非聚族索引以平衡I/O。当然更好利用系统的默认段。另外,利用段可以使备份和恢复数据更加灵活,使系统授权更加灵活。

利用合理建表、索引、存储过程。

系统优化,加内存

●数据库性能的优化

一个数据库系统的生命周期可以分成:设计、开发和成品三个阶段。在设计阶段进行数据库性能优化的成本更低,收益更大。在成品阶段进行数据库性能优化的成本更高,收益最小。

数据库的优化通常可以通型没过对网络、硬件、操作系统、数据库参数和应用程序的优化来进行。最常见的优化手段就是对硬件的岁友升级。根据统计,对网络、硬件、操作系统、数据库参数进行优化所获得的性能提升,全部加起来只占数据库系统性能提升的40%左右,其余的60%系统性能乎租槐提升来自对应用程序的优化。许多优化专家认为,对应用程序的优化可以得到80%的系统性能的提升。

●应用程序的优化

应用程序的优化通常可分为两个方面:源代码和SQL语句。由于涉及到对程序逻辑的改变,源代码的优化在时间成本和风险上代价很高,而对数据库系统性能的提升收效有限。

我陪你等,关注ing

mysql数据库怎么优化,有几方面的优化?

我列举几雹租弯个我熟悉的,

1,存储引擎,根据应用源闷选择合适的引擎

2,索引 —-这个就有很多文章了,具体需要你自己去了解

3,sql语句优化,查询条件的选择之类

4,mysql自身系统配置,需要针对应用去定制

5,表的选择,临时表,或者分区型枣表,也需要针对应用的情况去选择使用

在键租谨开始演示之前,我们先介绍下两个概念。

概念一,数据的可选择性基数,也就是常说的cardinality值。

查询优化器在生成各种执行计划之前,得先从统计信息中取得相关数据,这样才能估算每步操作所涉及到的记录数,而这个相关数据就是cardinality。简单来说,就是每个值在每个字段中的唯一值分布状态。

比如表t1有100行记录,其中一列为f1。f1中唯一值的个数可以是100个,也可以是1个,当然也可以是1到100之间的任何一个数字。这里唯一值越的多少,就是这个列的可选择基数。

那看到这里我们就明白了,为什么要在基数高的字段上建立索引,而基数低的的字段建立索引反而没有全表扫描来的快。当然这个只是一方面,至于更深入的探讨就不在我这篇探讨的范围了。

概念二,关于HINT的使用。

这里我来说下HINT是什么,在什么时候用。

HINT简单来说就是在某些特定的场景下人工协助MySQL优化器的工作,使她生成更优的执行计划。一般来说,优化器的执行计划都是更优化的,不过在某些特定场景下,执行计划可能不是更优化。

比如:表t1经过大稿基量的频繁更新操作,(UPDATE,DELETE,INSERT),cardinality已经很不准确了,这时候刚好执行了一条SQL,那么有可能这条SQL的执行计划就不是更优的。为什么说有可能呢?

来看下具体演示

譬如,以下两条SQL,

A:

select * from t1 where f1 = 20;

B:

select * from t1 where f1 = 30;

如果f1的值刚好频繁更新的值为30,并且没有达到MySQL自动更新cardinality值的临界值或者说用户设置了手动更新又或者用户减少了sample page等等,那么对这两条语句来说,可能不准确的就是B了。

这里顺带说下,MySQL提供了自动更新和手动更新表cardinality值的方法,因篇幅有限,需要的可以查阅手册。

那回到正题上,MySQL 8.0 带来了几个HINT,我今天就举个index_merge的例子。

示例表结构:

mysql> desc t1;+++——+—–++–+| Field      | Type| Null | Key | Default | Extra|+++——+—–++–+| id| int(11)      | NO   | PRI | NULL    | auto_increment || rank| int(11)      | YES  | MUL | NULL    |  || rank| int(11)      | YES  | MUL | NULL    |  || log_time   | datetime     | YES  | MUL | NULL    |  || prefix_uid | varchar(100) | YES  |     | NULL    |  || desc| text| YES  |     | NULL    |  || rank| int(11)      | YES  | MUL | NULL    |  型启|+++——+—–++–+7 rows in set (0.00 sec)

表记录数:

mysql> select count(*) from t1;++| count(*) |++||++1 row in set (0.01 sec)

这里我们两条经典的SQL:

SQL C:

select * from t1 where rank1 = 1 or rank2 = 2 or rank3 = 2;

SQL D:

select * from t1 where rank1 =100  and rank2 =100  and rank3 =100;

表t1实际上在rank1,rank2,rank3三列上分别有一个二级索引。

那我们来看SQL C的查询计划。

显然,没有用到任何索引,扫描的行数为32023,cost为3243.65。

mysql> explain  format=json select * from t1  where rank1 =1 or rank2 = 2 or rank3 = 2\G*************************** 1. row ***************************EXPLAIN: {  “query_block”: {    “select_id”: 1,    “cost_info”: {      “query_cost”: “3243.65”    },    “table”: {      “table_name”: “t1”,      “access_type”: “ALL”,      “possible_keys”: ,      “rows_examined_per_scan”: 32023,      “rows_produced_per_join”: 115,      “filtered”: “0.36”,      “cost_info”: {“read_cost”: “3232.07”,”eval_cost”: “11.58”,”prefix_cost”: “3243.65”,”data_read_per_join”: “49K”      },      “used_columns”: ,      “attached_condition”: “((`ytt`.`t1`.`rank1` = 1) or (`ytt`.`t1`.`rank2` = 2) or (`ytt`.`t1`.`rank3` = 2))”    }  }}1 row in set, 1 warning (0.00 sec)

我们加上hint给相同的查询,再次看看查询计划。

这个时候用到了index_merge,union了三个列。扫描的行数为1103,cost为441.09,明显比之前的快了好几倍。

mysql> explain  format=json select /*+ index_merge(t1) */ * from t1  where rank1 =1 or rank2 = 2 or rank3 = 2\G*************************** 1. row ***************************EXPLAIN: {  “query_block”: {    “select_id”: 1,    “cost_info”: {      “query_cost”: “441.09”    },    “table”: {      “table_name”: “t1”,      “access_type”: “index_merge”,      “possible_keys”: ,      “key”: “union(idx_rank1,idx_rank2,idx_rank3)”,      “key_length”: “5,5,5”,      “rows_examined_per_scan”: 1103,      “rows_produced_per_join”: 1103,      “filtered”: “100.00”,      “cost_info”: {“read_cost”: “330.79”,”eval_cost”: “110.30”,”prefix_cost”: “441.09”,”data_read_per_join”: “473K”      },      “used_columns”: ,      “attached_condition”: “((`ytt`.`t1`.`rank1` = 1) or (`ytt`.`t1`.`rank2` = 2) or (`ytt`.`t1`.`rank3` = 2))”    }  }}1 row in set, 1 warning (0.00 sec)

我们再看下SQL D的计划:

不加HINT,

mysql> explain format=json select * from t1 where rank1 =100 and rank2 =100 and rank3 =100\G*************************** 1. row ***************************EXPLAIN: {  “query_block”: {    “select_id”: 1,    “cost_info”: {      “query_cost”: “534.34”    },    “table”: {      “table_name”: “t1”,      “access_type”: “ref”,      “possible_keys”: ,      “key”: “idx_rank1”,      “used_key_parts”: ,      “key_length”: “5”,      “ref”: ,      “rows_examined_per_scan”: 555,      “rows_produced_per_join”: 0,      “filtered”: “0.07”,      “cost_info”: {“read_cost”: “478.84”,”eval_cost”: “0.04”,”prefix_cost”: “534.34”,”data_read_per_join”: “176”      },      “used_columns”: ,      “attached_condition”: “((`ytt`.`t1`.`rank3` = 100) and (`ytt`.`t1`.`rank2` = 100))”    }  }}1 row in set, 1 warning (0.00 sec)

加了HINT,

mysql> explain format=json select /*+ index_merge(t1)*/ * from t1 where rank1 =100 and rank2 =100 and rank3 =100\G*************************** 1. row ***************************EXPLAIN: {  “query_block”: {    “select_id”: 1,    “cost_info”: {      “query_cost”: “5.23”    },    “table”: {      “table_name”: “t1”,      “access_type”: “index_merge”,      “possible_keys”: ,      “key”: “intersect(idx_rank1,idx_rank2,idx_rank3)”,      “key_length”: “5,5,5”,      “rows_examined_per_scan”: 1,      “rows_produced_per_join”: 1,      “filtered”: “100.00”,      “cost_info”: {“read_cost”: “5.13”,”eval_cost”: “0.10”,”prefix_cost”: “5.23”,”data_read_per_join”: “440”      },      “used_columns”: ,      “attached_condition”: “((`ytt`.`t1`.`rank3` = 100) and (`ytt`.`t1`.`rank2` = 100) and (`ytt`.`t1`.`rank1` = 100))”    }  }}1 row in set, 1 warning (0.00 sec)

对比下以上两个,加了HINT的比不加HINT的cost小了100倍。

数据库优化是什么意思?

数据库优化的意思 是减少代码的冗余 提高重用性

数据库优化,首先最初硬件方面就可以优化硬盘IO,内存分配,就是安装时候调整的一系列操作系统级的内核参数,之后就是数据库架构上的优化运渣了大并,逻辑、数据结构等等,最后就是代码上滚悄迹的优化。当然优化是一个长期的工作,没有更优只有更优。

MRR 是 MySQL 针对特定查询的一种优化手段。假设一个查询有二级索引可用,读完二级索引后要回表才能查到那些不在当前二级索引上的列值,由于二级索引上引用的森仿腔主键值不一定是有序的,因此就有可能造成此衫大量的随机 IO,如果回表前把主键值给它排一下序,那么在回表的时候就可以用顺序 IO 取代原本的随机 IO。

如果想关闭 MRR 优化的话,就要把优化器开关 mrr 设置为 off。

默大携认只有在优化器认为 MRR 可以带来优化的情况下才会走 MRR,如果你想不管什么时候能走 MRR 的都走 MRR 的话,你要把 mrr_cost_based 设置为 off,不过更好不要这么干,因为这确实是一个坑,MRR 不一定什么时候都好,全表扫描有时候会更加快,如果在这种场景下走 MRR 就完成了。

MRR 要把主键排个序,这样之后对磁盘的操作就是由顺序读代替之前的随机读。从资源的使用情况上来看就是让 CPU 和内存多做点事,来换磁盘的顺序读。然而排序是需要内存的,这块内存的大小就由参数 read_rnd_buffer_size 来控制。

数据库优化包括的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于数据库优化包括,提升性能、空间、安全性:数据库优化全方位解析,谁知道数据库优化设计方案有哪些?,mysql数据库怎么优化,有几方面的优化?,数据库优化是什么意思?的信息别忘了在本站进行查找喔。

香港服务器选创新互联,2H2G首月10元开通。
创新互联(www.cdcxhl.com)互联网服务提供商,拥有超过10年的服务器租用、服务器托管、云服务器、虚拟主机、网站系统开发经验。专业提供云主机、虚拟主机、域名注册、VPS主机、云服务器、香港云服务器、免备案服务器等。

文章名称:提升性能、空间、安全性:数据库优化全方位解析(数据库优化包括)
本文链接:http://www.shufengxianlan.com/qtweb/news32/243082.html

网站建设、网络推广公司-创新互联,是专注品牌与效果的网站制作,网络营销seo公司;服务项目有等

广告

声明:本网站发布的内容(图片、视频和文字)以用户投稿、用户转载内容为主,如果涉及侵权请尽快告知,我们将会在第一时间删除。文章观点不代表本网站立场,如需处理请联系客服。电话:028-86922220;邮箱:631063699@qq.com。内容未经允许不得转载,或转载时需注明来源: 创新互联