通过 采集系统 我们采 集了大量文本数据,但是文本中有很多重复数据影响我们对于结果的分析。分析前我们需要对这些数据去除重复,如何选择和设计文本的去重算法?常见的有余弦夹 角算法、欧式距离、Jaccard相似度、最长公共子串、编辑距离等。这些算法对于待比较的文本数据不多时还比较好用,如果我们的爬虫每天采集的数据以千万计算,我们如何对于这些海量***的数据进行高效的合并去重。最简单的做法是拿着待比较的文本和数据库中所有的文本比较一遍如果是重复的数据就标示为重复。看起来很简单,我们来做个测试,就拿最简单的两个数据使用Apache提供的 Levenshtein for 循环100w次计算这两个数据的相似度。代码结果如下:
让客户满意是我们工作的目标,不断超越客户的期望值来自于我们对这个行业的热爱。我们立志把好的技术通过有效、简单的方式提供给客户,将通过不懈努力成为客户在信息化领域值得信任、有价值的长期合作伙伴,公司提供的服务项目有:域名申请、网络空间、营销软件、网站建设、塔河网站维护、网站推广。
- String s1 = "你妈妈喊你回家吃饭哦,回家罗回家罗" ;
- String s2 = "你妈妈叫你回家吃饭啦,回家罗回家罗" ;
- long t1 = System.currentTimeMillis();
- for (int i = 0; i < 1000000; i++) {
- int dis = StringUtils .getLevenshteinDistance(s1, s2);
- }
- long t2 = System.currentTimeMillis();
- System. out .println(" 耗费时间: " + (t2 - t1) + " ms ");
耗费时间: 4266 ms
大跌眼镜,居然计算耗费4秒。假设我们一天需要比较100w次,光是比较100w次的数据是否重复就需要4s,就算4s一个文档,单线程一分钟才处 理15个文档,一个小时才900个,一天也才21600个文档,这个数字和一天100w相差甚远,需要多少机器和资源才能解决。
为此我们需要一种应对于海量数据场景的去重方案,经过研究发现有种叫 local sensitive hash 局部敏感哈希 的东西,据说这玩意可以把文档降维到hash数字,数字两两计算运算量要小很多。查找很多文档后看到google对于网页去重使用的是simhash,他 们每天需要处理的文档在亿级别,大大超过了我们现在文档的水平。既然老大哥也有类似的应用,我们也赶紧尝试下。simhash是由 Charikar 在2002年提出来的,参考 《Similarity estimation techniques from rounding algorithms》 。 介绍下这个算法主要原理,为了便于理解尽量不使用数学公式,分为这几步:
整个过程图为:
大家可能会有疑问,经过这么多步骤搞这么麻烦,不就是为了得到个 0 1 字符串吗?我直接把这个文本作为字符串输入,用hash函数生成 0 1 值更简单。其实不是这样的,传统hash函数解决的是生成唯一值,比如 md5、hashmap等。md5是用于生成唯一签名串,只要稍微多加一个字符md5的两个数字看起来相差甚远;hashmap也是用于键值对查找,便于 快速插入和查找的数据结构。不过我们主要解决的是文本相似度计算,要比较的是两个文章是否相识,当然我们降维生成了hashcode也是用于这个目的。看 到这里估计大家就明白了,我们使用的simhash就算把文章中的字符串变成 01 串也还是可以用于计算相似度的,而传统的hashcode却不行。我们可以来做个测试,两个相差只有一个字符的文本串,“你妈妈喊你回家吃饭哦,回家罗回 家罗” 和 “你妈妈叫你回家吃饭啦,回家罗回家罗”。
通过simhash计算结果为:
1000010010101101111111100000101011010001001111100001001011001011
1000010010101101011111100000101011010001001111100001101010001011
通过 hashcode计算为:
1111111111111111111111111111111110001000001100110100111011011110
1010010001111111110010110011101
大家可以看得出来,相似的文本只有部分 01 串变化了,而普通的hashcode却不能做到,这个就是局部敏感哈希的魅力。目前Broder提出的shingling算法和Charikar的 simhash算法应该算是业界公认比较好的算法。在simhash的发明人Charikar的论文中并没有给出具体的simhash算法和证明,“量子图灵”得出的证明simhash是由随机超平面hash算法演变而来的。
现在通过这样的转换,我们把库里的文本都转换为simhash 代码,并转换为long类型存储,空间大大减少。现在我们虽然解决了空间,但是如何计算两个simhash的相似度呢?难道是比较两个simhash的 01有多少个不同吗?对的,其实也就是这样,我们通过海明距离(Hamming distance)就可以计算出两个simhash到底相似不相似。两个simhash对应二进制(01串)取值不同的数量称为这两个simhash的海 明距离。举例如下: 10101 和 00110 从***位开始依次有***位、第四、第五位不同,则海明距离为3。对于二进制字符串的a和b,海明距离为等于在a XOR b运算结果中1的个数(普遍算法)。
为了高效比较,我们预先加载了库里存在文本并转换为simhash code 存储在内存空间。来一条文本先转换为 simhash code,然后和内存里的simhash code 进行比较,测试100w次计算在100ms。速度大大提升。
未完待续:
1、目前速度提升了但是数据是不断增量的,如果未来数据发展到一个小时100w,按现在一次100ms,一个线程处理一秒钟 10次,一分钟 60 * 10 次,一个小时 60*10 *60 次 = 36000次,一天 60*10*60*24 = 864000次。 我们目标是一天100w次,通过增加两个线程就可以完成。但是如果要一个小时100w次呢?则需要增加30个线程和相应的硬件资源保证速度能够达到,这样 成本也上去了。能否有更好的办法,提高我们比较的效率?
2、通过大量测试,simhash用于比较大文本,比如500字以上效果都还蛮好,距离小于3的基本都是相似,误判率也比较低。但是如果我们处理的 是微博信息,最多也就140个字,使用simhash的效果并不那么理想。看如下图,在距离为3时是一个比较折中的点,在距离为10时效果已经很差了,不 过我们测试短文本很多看起来相似的距离确实为10。如果使用距离为3,短文本大量重复信息不会被过滤,如果使用距离为10,长文本的错误率也非常高,如何 解决?
本文标题:海量数据相似度计算之simhash和海明距离
网站网址:http://www.shufengxianlan.com/qtweb/news34/235234.html
网站建设、网络推广公司-创新互联,是专注品牌与效果的网站制作,网络营销seo公司;服务项目有等
声明:本网站发布的内容(图片、视频和文字)以用户投稿、用户转载内容为主,如果涉及侵权请尽快告知,我们将会在第一时间删除。文章观点不代表本网站立场,如需处理请联系客服。电话:028-86922220;邮箱:631063699@qq.com。内容未经允许不得转载,或转载时需注明来源: 创新互联