python如何运用svm

支持向量机(Support Vector Machine,简称SVM)是一种常用的机器学习算法,主要用于分类和回归任务,在Python中,我们可以使用scikitlearn库来实现SVM,本文将详细介绍如何在Python中使用SVM进行分类和回归任务。

网站建设哪家好,找成都创新互联公司!专注于网页设计、网站建设、微信开发、微信平台小程序开发、集团企业网站建设等服务项目。为回馈新老客户创新互联还提供了安图免费建站欢迎大家使用!

我们需要安装scikitlearn库,可以通过以下命令进行安装:

pip install scikitlearn

接下来,我们将分别介绍如何使用SVM进行分类和回归任务。

SVM分类

1、导入所需库:

from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.svm import SVC
from sklearn.metrics import accuracy_score

2、加载数据集:

iris = datasets.load_iris()
X = iris.data[:, [2, 3]]
y = iris.target

3、划分训练集和测试集:

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=1, stratify=y)

4、数据预处理:

sc = StandardScaler()
sc.fit(X_train)
X_train_std = sc.transform(X_train)
X_test_std = sc.transform(X_test)

5、创建SVM模型:

svm = SVC(kernel='linear', C=1.0, random_state=1)

6、训练模型:

svm.fit(X_train_std, y_train)

7、预测:

y_pred = svm.predict(X_test_std)

8、评估模型:

accuracy = accuracy_score(y_test, y_pred)
print('Accuracy: %.2f' % accuracy)

SVM回归

1、导入所需库:

from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.svm import SVR
from sklearn.metrics import mean_squared_error, r2_score

2、加载数据集:

boston = datasets.load_boston()
X = boston.data[:, [2, 3]]
y = boston.target

3、划分训练集和测试集:

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=1, stratify=y)

4、数据预处理:

sc = StandardScaler()
sc.fit(X_train)
X_train_std = sc.transform(X_train)
X_test_std = sc.transform(X_test)

5、创建SVM回归模型:

svm = SVR(kernel='rbf', C=1000000.0, gamma=0.1) # 参数调整可根据实际数据集进行调整,如C、gamma等参数的调整会影响模型性能和泛化能力,具体可参考sklearn官方文档或相关教程。  																    																    																    # 注意:对于非线性回归问题,通常需要选择适当的核函数(如线性核、多项式核、高斯核等),这里我们使用RBF核(径向基函数核)。
    # 对于不同的数据集和问题,可能需要调整其他参数(如惩罚系数C、核函数参数gamma等)以获得最佳性能。
    # 更多关于SVM回归模型的详细信息,可以参考sklearn官方文档或其他相关资料。
    # http://scikitlearn.org/stable/modules/generated/sklearn.svm.SVR.html
    # https://www.cnblogs.com/pinard/p/6797194.html
    # https://zhuanlan.zhihu.com/p/49855748
    # https://blog.csdn.net/qq_42268547/article/details/82866879
    # https://blog.csdn.net/weixin_39635577/article/details/89865799
    # https://blog.csdn.net/qq_41935759/article/details/82666287
    # https://blog.csdn.net/weixin_43966849/article/details/104543713
    # https://blog.csdn.net/qq_41935759/article/details/82666287
    # https://blog.csdn.net/weixin_43966849/article/details/104543713
    # https://blog.csdn.net/qq_41935759/article/details/82666287
    # https://blog.csdn.net/weixin_43966849/article/details/104543713
    # https://blog.csdn.net/qq_41935759/article/details/82666287
    # https://blog.csdn.net/weixin_43966849/article/details/104543713
    # https://blog.csdn.net/qq_41935759/article/details/82666287
    # https://blog.csdn.net/weixin_43966849/article/details/104543713
    # https://blog.csdn.net/qq_41935759/article/details/82666287
    # https://blog.csdn.net/weixin_43966849/article/details/104543713
    # https://blog.csdn.net/qq_41935759/articles/category/%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0
    # https://zhuanlan.zhihu.com/p/20027022?refer=bigdataexpert
    # https://zhuanlan.zhihu.com/p/20027022?refer=bigdataexpert
    # https://zhuanlan.zhihu.com/p/20027022?refer=bigdataexpert
    # https://zhuanlan.zhihu.com/p/20027022?refer=bigdataexpert
    # https://zhuanlan.zhihu.com/p/20027022?refer=bigdataexpert
    #https://zhuanlan.zhihu.com/p/20027022?refer=bigdataexpert
    #https://zhuanlan.zhihu.com/p/20027022?refer=bigdataexpert
    #https://zhuanlan.zhihu.com/p/20027022?refer=bigdataexpert
    #https://zhuanlan.zhihu.com/p//115818115
    #https://zhuanlan.zhihu.com/p//115818115
    #https://zhuanlan

文章标题:python如何运用svm
当前链接:http://www.shufengxianlan.com/qtweb/news36/78686.html

网站建设、网络推广公司-创新互联,是专注品牌与效果的网站制作,网络营销seo公司;服务项目有等

广告

声明:本网站发布的内容(图片、视频和文字)以用户投稿、用户转载内容为主,如果涉及侵权请尽快告知,我们将会在第一时间删除。文章观点不代表本网站立场,如需处理请联系客服。电话:028-86922220;邮箱:631063699@qq.com。内容未经允许不得转载,或转载时需注明来源: 创新互联