力扣题目:https://leetcode-cn.com/problems/convert-bst-to-greater-tree/
给出二叉 搜索 树的根节点,该树的节点值各不相同,请你将其转换为累加树(Greater Sum Tree),使每个节点 node 的新值等于原树中大于或等于 node.val 的值之和。
提醒一下,二叉搜索树满足下列约束条件:
节点的左子树仅包含键 小于 节点键的节点。节点的右子树仅包含键 大于 节点键的节点。左右子树也必须是二叉搜索树。
示例 1:
把二叉搜索树转换为累加树
示例 2:
示例 3:
示例 4:
提示:
一看到累加树,相信很多小伙伴都会疑惑:如何累加?遇到一个节点,然后在遍历其他节点累加?怎么一想这么麻烦呢。
然后再发现这是一颗二叉搜索树,二叉搜索树啊,这是有序的啊。
那么有序的元素如果求累加呢?
其实这就是一棵树,大家可能看起来有点别扭,换一个角度来看,这就是一个有序数组[2, 5, 13],求从后到前的累加数组,也就是[20, 18, 13],是不是感觉这就简单了。
为什么变成数组就是感觉简单了呢?
因为数组大家都知道怎么遍历啊,从后向前,挨个累加就完事了,这换成了二叉搜索树,看起来就别扭了一些是不是。
那么知道如何遍历这个二叉树,也就迎刃而解了,从树中可以看出累加的顺序是右中左,所以我们需要反中序遍历这个二叉树,然后顺序累加就可以了。
递归
遍历顺序如图所示:
把二叉搜索树转换为累加树
本题依然需要一个pre指针记录当前遍历节点cur的前一个节点,这样才方便做累加。
pre指针的使用技巧,我们在二叉树:搜索树的最小绝对差和二叉树:我的众数是多少?都提到了,这是常用的操作手段。
递归函数参数以及返回值
这里很明确了,不需要递归函数的返回值做什么操作了,要遍历整棵树。
同时需要定义一个全局变量pre,用来保存cur节点的前一个节点的数值,定义为int型就可以了。
代码如下:
- int pre; // 记录前一个节点的数值
- void traversal(TreeNode* cur)
遇空就终止。
- if (cur == NULL) return;
注意要右中左来遍历二叉树, 中节点的处理逻辑就是让cur的数值加上前一个节点的数值。
代码如下:
- traversal(cur->right); // 右
- cur->val += pre; // 中
- pre = cur->val;
- traversal(cur->left); // 左
递归法整体代码如下:
- class Solution {
- private:
- int pre; // 记录前一个节点的数值
- void traversal(TreeNode* cur) { // 右中左遍历
- if (cur == NULL) return;
- traversal(cur->right);
- cur->val += pre;
- pre = cur->val;
- traversal(cur->left);
- }
- public:
- TreeNode* convertBST(TreeNode* root) {
- pre = 0;
- traversal(root);
- return root;
- }
- };
迭代法
迭代法其实就是中序模板题了,在二叉树:前中后序迭代法和二叉树:前中后序统一方式迭代法可以选一种自己习惯的写法。
这里我给出其中的一种,代码如下:
- class Solution {
- private:
- int pre; // 记录前一个节点的数值
- void traversal(TreeNode* root) {
- stack
st; - TreeNode* cur = root;
- while (cur != NULL || !st.empty()) {
- if (cur != NULL) {
- st.push(cur);
- cur = cur->right; // 右
- } else {
- cur = st.top(); // 中
- st.pop();
- cur->val += pre;
- pre = cur->val;
- cur = cur->left; // 左
- }
- }
- }
- public:
- TreeNode* convertBST(TreeNode* root) {
- pre = 0;
- traversal(root);
- return root;
- }
- };
经历了前面各种二叉树增删改查的洗礼之后,这道题目应该比较简单了。
好了,二叉树已经接近尾声了,接下来就是要对二叉树来一个大总结了。
Java
- class Solution {
- int sum;
- public TreeNode convertBST(TreeNode root) {
- sum = 0;
- convertBST1(root);
- return root;
- }
- // 按右中左顺序遍历,累加即可
- public void convertBST1(TreeNode root) {
- if (root == null) {
- return;
- }
- convertBST1(root.right);
- sum += root.val;
- root.val = sum;
- convertBST1(root.left);
- }
- }
Python
递归法
- class Solution:
- def convertBST(self, root: TreeNode) -> TreeNode:
- def buildalist(root):
- if not root: return None
- buildalist(root.right) #右中左遍历
- root.val += self.pre
- self.pre = root.val
- buildalist(root.left)
- self.pre = 0 #记录前一个节点的数值
- buildalist(root)
- return root
本文转载自微信公众号「代码随想录」,可以通过以下二维码关注。转载本文请联系代码随想录公众号。
分享标题:聊一聊有一种树叫做累加树!
地址分享:http://www.shufengxianlan.com/qtweb/news37/389787.html
网站建设、网络推广公司-创新互联,是专注品牌与效果的网站制作,网络营销seo公司;服务项目有等
声明:本网站发布的内容(图片、视频和文字)以用户投稿、用户转载内容为主,如果涉及侵权请尽快告知,我们将会在第一时间删除。文章观点不代表本网站立场,如需处理请联系客服。电话:028-86922220;邮箱:631063699@qq.com。内容未经允许不得转载,或转载时需注明来源: 创新互联