Stackoverflow[1]的morganbaz的看法是:
使用iotil.ReadAll去读取go语言里大的Response Body,是非常低效的; 另外如果Response Body足够大,还有内存泄漏的风险。
data,err:= iotil.ReadAll(r)
if err != nil {
return err
}
json.Unmarshal(data, &v)
有一个更有效的方式来解析json数据,会用到Decoder类型
err := json.NewDecoder(r).Decode(&v)
if err != nil {
return err
}
这种方式从内存和时间角度,不但更简洁,而且更高效。
我针对前人的思路补充两点。
①.官方ioutil.ReadAll是通过初始大小为512字节的切片来读取reader,我们的response body大概50M, 很明显会频繁触发切片扩容,产生不必要的内存分配,给gc也带来压力。
go切片扩容的时机:需求小于256字节,按照2倍扩容;超过256字节,按照1.25倍扩容。
② .怎么理解morganbaz所说的带来的内存泄漏的风险?
内存泄漏是指程序已动态分配的堆内存由于某种原因未释放,造成系统内存浪费,导致程序运行速度减慢升职系统崩溃等严重后果。
ioutil.ReadAll读取大的Body会触发切片扩容,讲道理这种做法只会带来内存浪费,最终会被gc释放,原作者为什么会强调有内存泄漏的风险?
我咨询了一些童靴,对于需要长时间运行的高并发服务器程序,不及时释放内存也可能导致最终耗尽系统所有内存,这是一种隐式内存泄漏。
morganbaz大佬提出使用标准库encoding/json来边读边反序列化, 减少内存分配, 加快反序列化速度。
自古以来,JSON序列化就是兵家必争之地[2],各大语言内部均对序列化有不同的实现思路,性能相差较大。
下面使用高性能json序列化库json-iterator与原生ioutil.ReadAll+ json.Unmarshal方式做对比。
顺便也检验我最近实践pprof[3]的成果
# go get "github.com/json-iterator/go"
package main
import (
"bytes"
"flag"
"log"
"net/http"
"os"
"runtime/pprof"
"time"
jsoniter "github.com/json-iterator/go"
)
var cpuprofile = flag.String("cpuprofile", "", "write cpu profile to file.")
var memprofile = flag.String("memprofile", "", "write mem profile to file")
func main() {
flag.Parse()
if *cpuprofile != "" {
f, err := os.Create(*cpuprofile)
if err != nil {
log.Fatal(err)
}
pprof.StartCPUProfile(f)
defer pprof.StopCPUProfile()
}
c := &http.Client{
Timeout: 60 * time.Second,
// Transport: tr,
}
body := sendRequest(c, http.MethodPost)
log.Println("response body length:", body)
if *memprofile != "" {
f, err := os.Create(*memprofile)
if err != nil {
log.Fatal("could not create memory profile: ", err)
}
defer f.Close() // error handling omitted for example
if err := pprof.WriteHeapProfile(f); err != nil {
log.Fatal("could not write memory profile: ", err)
}
}
}
func sendRequest(client *http.Client, method string) int {
endpoint := "http://xxxxx.com/table/instance?method=batch_query"
expr := "idc in (logicidc_hd1,logicidc_hd2,officeidc_hd1)"
var json = jsoniter.ConfigCompatibleWithStandardLibrary
jsonData, err := json.Marshal([]string{expr})
log.Println("开始请求:" + time.Now().Format("2006-01-02 15:04:05.010"))
response, err := client.Post(endpoint, "application/json", bytes.NewBuffer(jsonData))
if err != nil {
log.Fatalf("Error sending request to api endpoint, %+v", err)
}
log.Println("服务端处理结束, 准备接收Response:" + time.Now().Format("2006-01-02 15:04:05.010"))
defer response.Body.Close()
var resp Response
var records = make(map[string][]Record)
resp.Data = &records
err= json.NewDecoder(response.Body).Decode(&resp)
if err != nil {
log.Fatalf("Couldn't parse response body, %+v", err)
}
log.Println("客户端读取+解析结束:" + time.Now().Format("2006-01-02 15:04:05.010"))
var result = make(map[string]*Data, len(records))
for _, r := range records[expr] {
result[r.Ins.Id] = &Data{Active: "0", IsProduct: true}
}
return len(result)
}
# 省略了反序列化的object type
非单纯序列化对比,前者对后者优化的效果反馈。
--- json-iterator边读 边反序列化 ---
--- io.ReadAll + json.Unmarshal 反序列化---
我们可以点进去看io.ReadAll + json.Unmarshal内存耗在哪里?
Total: 59.59MB 59.59MB (flat, cum) 100%
626 . . func ReadAll(r Reader) ([]byte, error) {
627 . . b := make([]byte, 0, 512)
628 . . for {
629 . . if len(b) == cap(b) {
630 . . // Add more capacity (let append pick how much).
631 59.59MB 59.59MB b = append(b, 0)[:len(b)]
632 . . }
633 . . n, err := r.Read(b[len(b):cap(b)])
634 . . b = b[:len(b)+n]
635 . . if err != nil {
636 . . if err == EOF {
从上图也可以印证io.ReadAll 为存储整个Response.Body对初始512字节的切片不断扩容, 产生常驻内存59M。
你还可以对比alloc_space 分配内存 ,(alloc_space、inuse_space 的差值可粗略理解为gc释放的部分)。
从结果看json-iterator相比io.ReadAll + json.Unmarshal 动态分配的内存还是比较小的。
ref:排查go开发的HttpClient读取Body超时
[1] Stackoverflow: https://stackoverflow.com/questions/52539695/alternative-to-ioutil-readall-in-go
[2] 自古以来,JSON序列化就是兵家必争之地: https://yalantis.com/blog/speed-up-json-encoding-decoding/
[3] 实践pprof: https://segmentfault.com/a/1190000016412013
标题名称:自古以来,JSON序列化就是兵家必争之地
转载来源:http://www.shufengxianlan.com/qtweb/news38/467888.html
网站建设、网络推广公司-创新互联,是专注品牌与效果的网站制作,网络营销seo公司;服务项目有等
声明:本网站发布的内容(图片、视频和文字)以用户投稿、用户转载内容为主,如果涉及侵权请尽快告知,我们将会在第一时间删除。文章观点不代表本网站立场,如需处理请联系客服。电话:028-86922220;邮箱:631063699@qq.com。内容未经允许不得转载,或转载时需注明来源: 创新互联