分布式和云计算有什么区别?(把客户的存款资料全都删除?)

分布式和云计算有什么区别?

“云是一个更上层、更抽象、更玄乎的概念。而分布式是一个很具体的概念。若没有分布式,云就无从谈起。但分布式计算却不一定都是云。”分布式是通过应用设计,将任务进行分解。云计算是通过类似网格的东西,由系统自动进行资源组合。什么是分布式计算?所谓分布式计算是一门计算机科学,它研究如何把一个需要非常巨大的计算能力才能解决的问题分成许多小的部分,然后把这些部分分配给许多计算机进行处理,最后把这些计算结果综合起来得到最终的结果。 最近的分布式计算项目已经被用于使用世界各地成千上万位志愿者的计算机的闲置计算能力,通过因特网,您可以分析来自外太空的电讯号,寻找隐蔽的黑洞,并探索可能存在的外星智慧生命;您可以寻找超过1000万位数字的梅森质数;您也可以寻找并发现对抗艾滋病病毒的更为有效的药物。这些项目都很庞大,需要惊人的计算量,仅仅由单个的电脑或是个人在一个能让人接受的时间内计算完成是决不可能的。 分布式计算是利用互联网上的计算机的 CPU 的闲置处理能力来解决大型计算问题的一种计算科学。下面,我们看看它是怎么工作的: 首先, 要发现一个需要非常巨大的计算能力才能解决的问题。这类问题一般是跨学科的、极富挑战性的、人类急待解决的科研课题。其中较为著名的是: 1.解决较为复杂的数学问题,例如:GIMPS(寻找最大的梅森素数)。 2.研究寻找最为安全的密码系统,例如:RC-72()。 3.生物病理研究,例如:Folding@home(研究蛋白质折叠,误解,聚合及由此引起的相关疾病)。 4.各种各样疾病的药物研究,例如:United Devices(寻找对抗癌症的有效的药物)。 5.信号处理,例如:SETI@Home(在家寻找地外文明)。 从这些实际的例子可以看出,这些项目都很庞大,需要惊人的计算量,仅仅由单个的电脑或是个人在一个能让人接受的时间内计算完成是决不可能的。在以前,这些问题都应该由超级计算机来解决。但是, 超级计算机的造价和维护非常的昂贵,这不是一个普通的科研组织所能承受的。随着科学的发展,一种廉价的、高效的、维护方便的计算方法应运而生——分布式计算! 随着计算机的普及,个人电脑开始进入千家万户。与之伴随产生的是电脑的利用问题。越来越多的电脑处于闲置状态,即使在开机状态下CPU的潜力也远远不能被完全利用。我们可以想象,一台家用的计算机将大多数的时间花费在“等待”上面。即便是使用者实际使用他们的计算机时,处理器依然是寂静的消费,依然是不计其数的等待(等待输入,但实际上并没有做什么)。互联网的出现, 使得连接调用所有这些拥有限制计算资源的计算机系统成为了现实。 那么,一些本身非常复杂的但是却很适合于划分为大量的更小的计算片断的问题被提出来,然后由某个研究机构通过大量艰辛的工作开发出计算用服务端和客户端。服务端负责将计算问题分成许多小的计算部分,然后把这些部分分配给许多联网参与计算的计算机进行并行处理,最后将这些计算结果综合起来得到最终的结果。 当然,这看起来也似乎很原始、很困难,但是随着参与者和参与计算的计算机的数量的不断增加, 计算计划变得非常迅速,而且被实践证明是的确可行的。目前一些较大的分布式计算项目的处理能力已经可以达到甚而超过目前世界上速度最快的巨型计算机。 您也可以选择参加某些项目以捐赠的 Cpu 内核处理时间,您将发现您所提供的 CPU 内核处理时间将出现在项目的贡献统计中。您可以和其他的参与者竞争贡献时间的排名,您也可以加入一个已经存在的计算团体或者自己组建一个计算小组。这种方法很利于调动参与者的热情。 随着民间的组队逐渐增多, 许多大型组织(例如公司、学校和各种各样的网站)也开始了组建自己的战队。同时,也形成了大量的以分布式计算技术和项目讨论为主题的社区,这些社区多数是翻译制作分布式计算项目的使用教程及发布相关技术性文章,并提供必要的技术支持。 那么谁可能加入到这些项目中来呢? 当然是任何人都可以! 如果您已经加入了某个项目,而且曾经考虑加入计算小组, 您将在分布式计算总站及论坛里找到您的家。任何人都能加入任何由我站的组建的分布式计算小组。希望您在分布式总站及论坛里发现乐趣。 参与分布式计算——一种能充分发挥您的个人电脑的利用价值的最有意义的选择——只需要下载有关程序,然后这个程序会以最低的优先度在计算机上运行,这对平时正常使用计算机几乎没有影响。如果你想利用计算机的空余时间做点有益的事情,还犹豫什么?马上行动起来吧,你的微不足道的付出或许就能使你在人类科学的发展史上留下不小的一笔呢! 专业定义 (科学技术信息研究所对分布式计算的定义) 分布式计算是近年提出的一种新的计算。所谓分布式计算就是在两个或多个软件互相共享信息,这些软件既可以在同一台计算机上运行,也可以在通过网络连接起来的多台计算机上运行。分布式计算比起其它算法具有以下几个优点: 1、稀有资源可以共享, 2、通过分布式计算可以在多台计算机上平衡计算负载, 3、可以把程序放在最适合运行它的计算机上, 其中,共享稀有资源和平衡负载是计算机分布式计算的核心思想之一。 实际上,网格计算就是分布式计算的一种。如果我们说某项工作是分布式的,那么,参与这项工作的一定不只是一台计算机,而是一个计算机网络,显然这种“蚂蚁搬山”的。网格计算的实质就是组合与共享资源并确保系统安全。狭义云计算是指IT基础设施的交付和使用模式,指通过网络以按需、易扩展的(硬件、平台、软件)。 提供资源的网络被称为“云”。“云”中的资源在使用者看来是可以无限扩展的,并且可以随时获取,按需使用,随时扩展,按使用付费。这种特性经常被称为像水电一样使用IT基础设施。 2、广义云计算 广义云计算是指服务的交付和使用模式,指通过网络以按需、易扩展的。这种服务可以是IT和软件、互联网相关的,也可以是任意其他的服务。 解释: 这种资源池称为“云”。“云”是一些可以自我维护和管理的虚拟计算资源,通常为一些大型服务器集群,包括计算服务器、存储服务器、宽带资源等等。云计算将所有的计算资源集中起来,并由软件实现自动管理,无需人为参与。这使得应用提供者无需为繁琐的细节而烦恼,能够更加专注于自己的业务,有利于创新和降低成本。 有人打了个比方:这就好比是从古老的单台发电机模式转向了电厂集中供电的模式。它意味着计算能力也可以作为一种商品进行流通,就像煤气、水电一样,取用方便,费用低廉。最大的不同在于,它是通过互联网进行传输的。 云计算是并行计算(Parallel Computing)、分布式计算(Distributed Computing)和网格计算(Grid Computing)的发展,或者说是这些计算机科学概念的商业实现。云计算是虚拟化(Virtualization)、效用计算(Utility Computing)、IaaS(基础设施即服务)、PaaS(平台即服务)、SaaS(软件即服务)等概念混合演进并跃升的结果。 总的来说,云计算可以算作是网格计算的一个商业演化版。早在2002年,我国就针对传统网格计算思路存在不实用问题,提出计算池的概念:“把分散在各地的高性能计算机用高速网络连接起来,用专门设计的中间件软件有机地粘合在一起,以Web界面接受各地科学工作者提出的计算请求,并将之分配到合适的结点上运行。计算池能大大提高资源的服务质量和利用率,同时避免跨结点划分应用程序所带来的低效性和复杂性,能够在目前条件下达到实用化要求。”如果将文中的“高性能计算机”换成“服务器集群”,将“科学工作者”换成“商业用户”,就与当前的云计算非常接近了。 云计算具有以下特点: (1) 超大规模。“云”具有相当的规模,Google云计算已经拥有100多万台服务器, Amazon、IBM、微软、Yahoo等的“云”均拥有几十万台服务器。企业私有云一般拥有数百上千台服务器。“云”能赋予用户前所未有的计算能力。 (2) 虚拟化。云计算支持用户在任意位置、使用各种终端获取应用服务。所请求的资源来自“云”,而不是固定的有形的实体。应用在“云”中某处运行,但实际上用户无需了解、也不用担心应用运行的具置。只需要一台笔记本或者一个手机,就可以通过网络服务来实现我们需要的一切,甚至包括超级计算这样的任务。 (3) 高可靠性。“云”使用了数据多副本容错、计算节点同构可互换等措施来保障服务的高可靠性,使用云计算比使用本地计算机可靠。 (4) 通用性。云计算不针对特定的应用,在“云”的支撑下可以构造出千变万化的应用,同一个“云”可以同时支撑不同的应用运行。 (5) 高可扩展性。“云”的规模可以动态伸缩,满足应用和用户规模增长的需要。 (6) 按需服务。“云”是一个庞大的资源池,你按需购买;云可以象自来水,电,煤气那样计费。 (7) 极其廉价。由于“云”的特殊容错措施可以采用极其廉价的节点来构成云,“云”的自动化集中式管理使大量企业无需负担日益高昂的数据中心管理成本,“云”的通用性使资源的利用率较之传统系统大幅提升,因此用户可以充分享受“云”的低成本优势,经常只要花费几百美元、几天时间就能完成以前需要数万美元、数月时间才能完成的任务。

成都创新互联公司坚持“要么做到,要么别承诺”的工作理念,服务领域包括:成都网站设计、成都做网站、企业官网、英文网站、手机端网站、网站推广等服务,满足客户于互联网时代的文峰网站设计、移动媒体设计的需求,帮助企业找到有效的互联网解决方案。努力成为您成熟可靠的网络建设合作伙伴!

把客户的存款资料全都删除?

不知道!

集中式系统和分布式系统有什么区别?

分布式计算机系统的特点:无主从区分;计算机之间交换信息;资源共享;相互协作完成一个共同任务分布式计算机系统的功能:通信结构;网络操作系统;分布式操作系统(透明性)

分布式系统的优点:集中式系统的特点分布的需求分布式系统的优点:方便使用;强壮性和可靠性;资源共享;可扩性;最终用户的生产效率;维护方便与单机操作系统的区别在进程通信、资源管理和系统结构等方面进程通信与单机的不同处:不共享内存;可靠性低;通信的实现:语义、语法、定时资源管理与单机的不同处:多管理者管同一类资源管理:一个类中可以有多个资源,但每个资源本身还是由单个管理者管理。 分布式计算机系统是一种计算机硬件的配置。它是一种多处理器的计算机系统,各处理器通过互连网络构成统一的系统。系统采用分布式计算结构,即把原来系统内中央处理器处理的任务分散给相应的处理器,实现不同功能的各个处理器相互协调,共享系统的外设与软件。这样就加快了系统的处理速度,简化了主机的逻辑结构,特别适合于工业生产线自动控制和企事业单位的管理,成本低,易于维护,成为计算机在应用领域发展的一个重要方向。 集中式系统,主要指IBM、HP等小型机以上档次的系统,一个主机带多个终端。终端没有数据处理能力,运算全部在主机上进行。现在的银行系统,大部分都是这种集中式的系统,此外,在大型企业、科研单位、、等也有分布。集中式系统,主要流行于上个世纪。现在还在使用集中式系统的,很大一部分是为了沿用原来的软件,而这些软件往很昂贵。

该如何学习大数据知识?

我刚开始学习接触编程时,是接触的C语言,然后是C++,后来就是Java。当我第一次接触Java时,就深深地爱上了它,因为它简单,易懂。之后接触JavaWeb,开始学些开发后端的技术。那时大数据也比较火热,再加上自己本身就是数学出生,大数据对我来说就是一个很好的选择啦。

慢慢地我就开始接触大数据,从JavaSE学起,接着学习Linux系统,其中Linux中有CentOS和ubuntu,这两者个人觉得都好用。接着学习地就是Hadoop,它包括两大块HDFS(分布式文件系统)和MapReduce(并行计算框架),虽说MapReduce现在用的少了,但是学习它之后,对你以后学习更好的并行计算框架来说有很多的好处。接着就可以学习数据仓库Hive,Hive的底层实现其实就是MapReduce,它使用的SQL语言叫做HQL,之前学过MySQL数据库的话,很容易上手,但是想更深的了解Hive的话,还需学习MapReduce,Hive它用于OLAP,不支持事务性。接着再学习HBase面向列族的分布式数据库,它支持事务操作,但是在实践中个人感觉不太好使。它是架在Hadoop之上的数据库,适用于随机访问,实时读写。然而有了大量的数据之后,如何更好的把来源不同的数据导入到自己想要用的数据库中呢,可以使用Sqoop,个人认为它简单好用,方便。

接下来就可以学习Flume,它是一个分布式的收集日志的框架,可以处理很多种类型的文件。接着就学习Kafka,它是一个消息发布订阅实时处理系统。具有高吞吐量的能力。接着可以学习Strom ,实时的流计算框架。可以高速的攫取数据,可以执行各种数据的并行计算。接下来就可以学习Spark,Spark由SparkSQL、Spark Streaming、MLlib、Graph等组成,可以解决Batch Processing、Stream Processing、Ad-hocQuery(即席查询)等三大核心问题。Spark确实相比于MapReduce来说要快很多,毕竟它是基于内存计算的框架。

接下来还可以学习数据分析,数据挖掘,机器学习等相关的知识。

现在我就开始解读一下什么是大数据?

大数据顾名思义就是数据量很大,大到什么级别吗?它不是几兆,不是几个GB,而是几百GB,几个TB,几个PB,达到传统的数据库根本承受不了,现在一般都是用Hadoop技术,Hive技术,Spark技术等处理。

那么大数据的特征有哪些呢?有4点

1.数据在体量方面很大,比如说文字,有各种各样的来源,有电子书|实体书|杂志|报刊等,它们的数据大吧。

2.数据的类型多种多样,有些是结构化的数据,像存在Oracle,MySQL这些传统的数据库里的数据,一般都是结构化,可 以是还有非结构化,比如HTML,WORD,execl等格式。

3.它们的价值密度低,这样说吧,你比如说观看一条数据好像价值也不大,但是分析所有的数据之后呢?总会挖掘出一些 重要的东西。

大数据的特征

4.处理这些数据的速度要快。比如像Hadoop技术的MapReduce计算框架,相比传统的数据库处理速度要快,它的吞吐量 特别的大,再比如Spark,Spark在内存方面计算比Hadoop快100倍,在磁盘方面计算快10倍。

大数据的处理与传统的数据处理的区别是什么呢?

就是使用全部的数据来分析,得出结论,想想就知道它的好处啦。

大数据的应用???

可以做推荐系统的,想电商、影视类的app,你平时关注什么商品,或者浏览什么类型的商品,或者看什么类型的影视,或者看谁主要的影视,经过大数据分析处理之后,这些app就会推荐想类似的商品或者影视

在销售方面,我想一个例子大家都听说过,就是尿片和啤酒的销售

银行方面的反欺诈应用。经过大量的数据分析,可以得出欺诈的行为特征,根据这些特征就可以更大概率的确定是不是欺诈行为

人工智能方面,想Google的阿尔法狗,无人汽车驾驶等,这些都在使用大数据。

......

名称栏目:分布式和云计算有什么区别?(把客户的存款资料全都删除?)
路径分享:http://www.shufengxianlan.com/qtweb/news38/80638.html

网站建设、网络推广公司-创新互联,是专注品牌与效果的网站制作,网络营销seo公司;服务项目有等

广告

声明:本网站发布的内容(图片、视频和文字)以用户投稿、用户转载内容为主,如果涉及侵权请尽快告知,我们将会在第一时间删除。文章观点不代表本网站立场,如需处理请联系客服。电话:028-86922220;邮箱:631063699@qq.com。内容未经允许不得转载,或转载时需注明来源: 创新互联