消息“时序”与“一致性”为何这么难?

分布式系统中,很多业务场景都需要考虑消息投递的时序,例如:

成都创新互联是一家以成都网站建设、网页设计、品牌设计、软件运维、成都网站营销、小程序App开发等移动开发为一体互联网公司。已累计为成都木制凉亭等众行业中小客户提供优质的互联网建站和软件开发服务。

(1)单聊消息投递,保证发送方发送顺序与接收方展现顺序一致

(2)群聊消息投递,保证所有接收方展现顺序一致

(3)充值支付消息,保证同一个用户发起的请求在服务端执行序列一致

消息时序是分布式系统架构设计中非常难的问题,ta为什么难,有什么常见优化实践,是本文要讨论的问题。

一、为什么时序难以保证,消息一致性难?

为什么分布式环境下,消息的时序难以保证,这边简要分析了几点原因:

【时钟不一致】

分布式环境下,有多个客户端、有web集群、service集群、db集群,他们都分布在不同的机器上,机器之间都是使用的本地时钟,而没有一个所谓的“全局时钟”,所以不能用“本地时间”来完全决定消息的时序。

【多客户端(发送方)】

多服务器不能用“本地时间”进行比较,假设只有一个接收方,能否用接收方本地时间表示时序呢?遗憾的是,由于多个客户端的存在,即使是一台服务器的本地时间,也无法表示“绝对时序”。

如上图,绝对时序上,APP1先发出msg1,APP2后发出msg2,都发往服务器web1,网络传输是不能保证msg1一定先于msg2到达的,所以即使以一台服务器web1的时间为准,也不能精准描述msg1与msg2的绝对时序。

【服务集群(多接收方)】

多发送方不能保证时序,假设只有一个发送方,能否用发送方的本地时间表示时序呢?遗憾的是,由于多个接收方的存在,无法用发送方的本地时间,表示“绝对时序”。

如上图,绝对时序上,web1先发出msg1,后发出msg2,由于网络传输及多接收方的存在,无法保证msg1先被接收到先被处理,故也无法保证msg1与msg2的处理时序。

【网络传输与多线程】

多发送方与多接收方都难以保证绝对时序,假设只有单一的发送方与单一的接收方,能否保证消息的绝对时序呢?结论是悲观的,由于网络传输与多线程的存在,仍然不行。

如上图,web1先发出msg1,后发出msg2,即使msg1先到达(网络传输其实还不能保证msg1先到达),由于多线程的存在,也不能保证msg1先被处理完。

【怎么保证绝对时序】

通过上面的分析,假设只有一个发送方,一个接收方,上下游连接只有一条连接池,通过阻塞的方式通讯,难道不能保证先发出的消息msg1先处理么?

回答:可以,但吞吐量会非常低,而且单发送方单接收方单连接池的假设不太成立,高并发高可用的架构不会允许这样的设计出现。

二、优化实践

【以客户端或者服务端的时序为准】

多客户端、多服务端导致“时序”的标准难以界定,需要一个标尺来衡量时序的先后顺序,可以根据业务场景,以客户端或者服务端的时间为准,例如:

(1)邮件展示顺序,其实是以客户端发送时间为准的,潜台词是,发送方只要将邮件协议里的时间调整为1970年或者2970年,就可以在接收方收到邮件后一直“置顶”或者“置底”

(2)秒杀活动时间判断,肯定得以服务器的时间为准,不可能让客户端修改本地时间,就能够提前秒杀

【服务端能够生成单调递增的id】

这个是毋庸置疑的,不展开讨论,例如利用单点写db的seq/auto_inc_id肯定能生成单调递增的id,只是说性能及扩展性会成为潜在瓶颈。对于严格时序的业务场景,可以利用服务器的单调递增id来保证时序。

【大部分业务能接受误差不大的趋势递增id】

消息发送、帖子发布时间、甚至秒杀时间都没有这么精准时序的要求:

(1)同1s内发布的聊天消息时序乱了

(2)同1s内发布的帖子排序不对

(3)用1s内发起的秒杀,由于服务器多台之间时间有误差,落到A服务器的秒杀成功了,落到B服务器的秒杀还没开始,业务上也是可以接受的(用户感知不到)

所以,大部分业务,长时间趋势递增的时序就能够满足业务需求,非常短时间的时序误差一定程度上能够接受。

关于绝对递增id,趋势递增id的生成架构,详见文章《细聊分布式ID生成方法》,此处不展开。

【利用单点序列化,可以保证多机相同时序】

数据为了保证高可用,需要做到进行数据冗余,同一份数据存储在多个地方,怎么保证这些数据的修改消息是一致的呢?利用的就是“单点序列化”:

(1)先在一台机器上序列化操作

(2)再将操作序列分发到所有的机器,以保证多机的操作序列是一致的,最终数据是一致的

典型场景一:数据库主从同步

数据库的主从架构,上游分别发起了op1,op2,op3三个操作,主库master来序列化所有的SQL写操作op3,op1,op2,然后把相同的序列发送给从库slave执行,以保证所有数据库数据的一致性,就是利用“单点序列化”这个思路。

典型场景二:GFS中文件的一致性

GFS(Google File System)为了保证文件的可用性,一份文件要存储多份,在多个上游对同一个文件进行写操作时,也是由一个主chunk-server先序列化写操作,再将序列化后的操作发送给其他chunk-server,来保证冗余文件的数据一致性的。

【单对单聊天,怎么保证发送顺序与接收顺序一致】

单人聊天的需求,发送方A依次发出了msg1,msg2,msg3三个消息给接收方B,这三条消息能否保证显示时序的一致性(发送与显示的顺序一致)?

回答:

(1)如果利用服务器单点序列化时序,可能出现服务端收到消息的时序为msg3,msg1,msg2,与发出序列不一致

(2)业务上不需要全局消息一致,只需要对于同一个发送方A,ta发给B的消息时序一致就行,常见优化方案,在A往B发出的消息中,加上发送方A本地的一个绝对时序,来表示接收方B的展现时序

msg1{seq:10, receiver:B,msg:content1 }

msg2{seq:20, receiver:B,msg:content2 }

msg3{seq:30, receiver:B,msg:content3 }

潜在问题:如果接收方B先收到msg3,msg3会先展现,后收到msg1和msg2后,会展现在msg3的前面。

无论如何,是按照接收方收到时序展现,还是按照服务端收到的时序展现,还是按照发送方发送时序展现,是pm需要思考的点,技术上都能够实现(接收方按照发送时序展现是更合理的)。

总之,需要一杆标尺来衡量这个时序。

【群聊消息,怎么保证各接收方收到顺序一致】

群聊消息的需求,N个群友在一个群里聊,怎么保证所有群友收到的消息显示时序一致?

回答:

(1)不能再利用发送方的seq来保证时序,因为发送方不单点,时间也不一致

(2)可以利用服务器的单点做序列化

此时群聊的发送流程为:

(1)sender1发出msg1,sender2发出msg2

(2)msg1和msg2经过接入集群,服务集群

(3)service层到底层拿一个***seq,来确定接收方展示时序

(4)service拿到msg2的seq是20,msg1的seq是30

(5)通过投递服务讲消息给多个群友,群友即使接收到msg1和msg2的时间不同,但可以统一按照seq来展现

这个方法能实现,所有群友的消息展示时序相同。

缺点是,这个生成全局递增序列号的服务很容易成为系统瓶颈,还有没有进一步的优化方法呢?

思路:群消息其实也不用保证全局消息序列有序,而只要保证一个群内的消息有序即可,这样的话,“id串行化”就成了一个很好的思路。

这个方案中,service层不再需要去一个统一的后端拿全局seq,而是在service连接池层面做细小的改造,保证一个群的消息落在同一个service上,这个service就可以用本地seq来序列化同一个群的所有消息,保证所有群友看到消息的时序是相同的。

关于id串行化的细节,可详见《利用id串行化解决缓存与数据库一致性问题》,此处不展开。

三、总结

(1)分布式环境下,消息的有序性是很难的,原因多种多样:时钟不一致,多发送方,多接收方,多线程,网络传输不确定性等

(2)要“有序”,先得有衡量“有序”的标尺,可以是客户端标尺,可以是服务端标尺

(3)大部分业务能够接受大范围趋势有序,小范围误差;绝对有序的业务,可以借助服务器绝对时序的能力

(4)单点序列化,是一种常见的保证多机时序统一的方法,典型场景有db主从一致,gfs多文件一致

(5)单对单聊天,只需保证发出的时序与接收的时序一致,可以利用客户端seq

(6)群聊,只需保证所有接收方消息时序一致,需要利用服务端seq,方法有两种,一种单点绝对时序,另一种id串行化

文章来源微信号:gh_10a6b96351a9,已获授权转载

本文名称:消息“时序”与“一致性”为何这么难?
文章源于:http://www.shufengxianlan.com/qtweb/news4/5004.html

网站建设、网络推广公司-创新互联,是专注品牌与效果的网站制作,网络营销seo公司;服务项目有等

广告

声明:本网站发布的内容(图片、视频和文字)以用户投稿、用户转载内容为主,如果涉及侵权请尽快告知,我们将会在第一时间删除。文章观点不代表本网站立场,如需处理请联系客服。电话:028-86922220;邮箱:631063699@qq.com。内容未经允许不得转载,或转载时需注明来源: 创新互联