小编介绍过pandas中join()方法两种应用方法,其中作用于dataframe是通过索引或指定列来连接dataframe,在平时中最常见的join方式为按某个相同列进行join很容易报错,这是因为join的时候会根据dataframe的索引进行,本文介绍pandas中join()方法用于索引上的合并的使用原理及具体实例。
1、pandas中join()方法
dataframe内置了join方法是一种快速合并的方法。它默认以index作为对齐的列。
2、语法格式
join(other,on=None,how=“left”,lsuffix=" “,rsuffix=” ",sort=False)
3、使用参数
on:用于连接名。 //如果两个表中行索引和列索引重叠,那么当使用join()方法进行合并时,使用参数on指定重叠的列名即可
how:可以从{“left”,“right”," outer",“inner”} 中任选一个,默认使用left的方式。
lsuffix:接收字符串,用于在左侧重叠的列名后添加后缀名。
rsuffix:接收字符串,用于在右侧重叠的列名后添加后缀名。sort:接收布尔值,根据连接键对合并的数据进行排序,默认为False。
4、通过索引连接DataFrame使用实例
>>> caller.join(other, lsuffix='_caller', rsuffix='_other') key_caller A key_other B 0 K0 A0 K0 B0 1 K1 A1 K1 B1 2 K2 A2 K2 B2 3 K3 A3 K99 B99 4 K4 A4 NaN NaN 5 K5 A5 NaN NaN
以上就是pandas中join()方法用于索引上的合并的使用原理及具体实例,希望能对你有所帮助哦~
当前标题:创新互联Python教程:pandas中join()方法如何用于索引上的合并?
标题路径:http://www.shufengxianlan.com/qtweb/news41/337691.html
网站建设、网络推广公司-创新互联,是专注品牌与效果的网站制作,网络营销seo公司;服务项目有等
声明:本网站发布的内容(图片、视频和文字)以用户投稿、用户转载内容为主,如果涉及侵权请尽快告知,我们将会在第一时间删除。文章观点不代表本网站立场,如需处理请联系客服。电话:028-86922220;邮箱:631063699@qq.com。内容未经允许不得转载,或转载时需注明来源: 创新互联