如何使用OpenAttack进行文本对抗攻击

关于OpenAttack

OpenAttack是一款专为文本对抗攻击设计的开源工具套件,该工具基于Python开发,可以处理文本对抗攻击的整个过程,包括预处理文本、访问目标用户模型、生成对抗示例和评估攻击模型等等。

网站建设哪家好,找创新互联建站!专注于网页设计、网站建设、微信开发、微信平台小程序开发、集团企业网站建设等服务项目。为回馈新老客户创新互联还提供了涉县免费建站欢迎大家使用!

功能&使用

OpenAttack支持以下几种功能:

  • 高可用性:OpenAttack提供了易于使用的API,可以支持文本对抗攻击的整个过程;
  • 全面覆盖攻击模型类型:OpenAttack支持句子/单词/字符级扰动和梯度/分数/基于决策/盲攻击模型;
  • 灵活性强&可扩展:我们可以轻松攻击定制目标用户模型,或开发和评估定制的攻击模型;
  • 综合评估:OpenAttack可以从攻击有效性、对抗示例质量和攻击效率等方面全面评估攻击模型;

OpenAttack的使用范围非常广,其中包括但不限于:

  • 为攻击模型提供各种评估基线;
  • 使用其全面评估指标综合评估攻击模型;
  • 借助通用攻击组件,协助快速开发新的攻击模型;
  • 评估机器学习模型对各种对抗攻击的鲁棒性;
  • 通过使用生成的对抗示例丰富训练数据,进行对抗训练以提高机器学习模型的鲁棒性;

工具模块

工具安装

我们可以使用pip安装,或者克隆该项目源码来安装OpenAttack。

使用pip安装(推荐):

 
 
 
  1. pip install OpenAttack 

克隆代码库:

 
 
 
  1. git clone https://github.com/thunlp/OpenAttack.git 
  2. cd OpenAttack  
  3. python setup.py install 

安装完成之后,我们可以尝试运行“demo.py”来检测OpenAttack是否能够正常工作:

使用样例

(1) 基础使用:使用内置攻击模型

OpenAttack内置了一些常用的文本分类模型,如LSTM和BERT,以及用于情感分析的SST和用于自然语言推理的SNLI等数据集。

以下代码段显示了如何使用基于遗传算法的攻击模型攻击SST数据集上的BERT:

 
 
 
  1. import OpenAttack as oa  
  2. # choose a trained victim classification model  
  3. victim = oa.DataManager.load("Victim.BERT.SST")  
  4. # choose an evaluation dataset  
  5. dataset = oa.DataManager.load("Dataset.SST.sample")  
  6. # choose Genetic as the attacker and initialize it with default parameters  
  7. attacker = oa.attackers.GeneticAttacker()  
  8. # prepare for attacking  
  9. attack_eval = oa.attack_evals.DefaultAttackEval(attacker, victim)  
  10. # launch attacks and print attack results  
  11. attack_eval.eval(dataset, visualize=True) 

(2) 高级使用:攻击自定义目标用户模型

下面的代码段显示了如何使用基于遗传算法的攻击模型攻击SST上的自定义情绪分析模型:

 
 
 
  1. import OpenAttack as oa  
  2. import numpy as np  
  3. from nltk.sentiment.vader import SentimentIntensityAnalyzer 
  4.  
  5.    
  6. # configure access interface of the customized victim model  
  7. class MyClassifier(oa.Classifier):  
  8.     def __init__(self):  
  9.         self.model = SentimentIntensityAnalyzer()  
  10.     # access to the classification probability scores with respect input sentences  
  11.     def get_prob(self, input_):  
  12.         rt = []  
  13.         for sent in input_:  
  14.             rs = self.model.polarity_scores(sent)  
  15.             prob = rs["pos"] / (rs["neg"] + rs["pos"])  
  16.             rt.append(np.array([1 - prob, prob]))  
  17.         return np.array(rt)  
  18. # choose the costomized classifier as the victim model  
  19. victim = MyClassifier()  
  20. # choose an evaluation dataset 
  21. dataset = oa.DataManager.load("Dataset.SST.sample")  
  22. # choose Genetic as the attacker and initialize it with default parameters  
  23. attacker = oa.attackers.GeneticAttacker()  
  24. # prepare for attacking  
  25. attack_eval = oa.attack_evals.DefaultAttackEval(attacker, victim)  
  26. # launch attacks and print attack results  
  27. attack_eval.eval(dataset, visualize=True) 

项目地址

OpenAttack:【GitHub传送门】

网页题目:如何使用OpenAttack进行文本对抗攻击
文章地址:http://www.shufengxianlan.com/qtweb/news42/508492.html

成都网站建设公司_创新互联,为您提供营销型网站建设企业网站制作搜索引擎优化网站内链云服务器手机网站建设

广告

声明:本网站发布的内容(图片、视频和文字)以用户投稿、用户转载内容为主,如果涉及侵权请尽快告知,我们将会在第一时间删除。文章观点不代表本网站立场,如需处理请联系客服。电话:028-86922220;邮箱:631063699@qq.com。内容未经允许不得转载,或转载时需注明来源: 创新互联