1、使用del函数删除指定列
创新互联是一家集网站建设,乌拉特前企业网站建设,乌拉特前品牌网站建设,网站定制,乌拉特前网站建设报价,网络营销,网络优化,乌拉特前网站推广为一体的创新建站企业,帮助传统企业提升企业形象加强企业竞争力。可充分满足这一群体相比中小企业更为丰富、高端、多元的互联网需求。同时我们时刻保持专业、时尚、前沿,时刻以成就客户成长自我,坚持不断学习、思考、沉淀、净化自己,让我们为更多的企业打造出实用型网站。
python 中针对DataFrame格式的数据,删除列最简单的方法是使用del 函数,简单粗暴效果好,如
import pandas as pd df = pd.DataFrame(columns = list('AB'),data = [[1,2,3],[4,5,6]]) print(df) 结果如下: A B C 0 1 2 3 1 4 5 6 #删除B列 del df['B'] print(df) 结果如下: A C 0 1 3 1 4` 6
DataFrame是一种表格型数据结构,它含有一组有序的列,每列可以是不同的值。DataFrame既有行索引,也有列索引,它可以看作是由Series组成的字典,不过这些Series公用一个索引。
2、使用DataFrame.drop函数删除指定列
用法:DataFrame.drop(labels=None,axis=0, index=None, columns=None, inplace=False)
参数说明:
labels 就是要删除的行列的名字,用列表给定
axis 默认为0,指删除行,因此删除columns时要指定axis=1;
index 直接指定要删除的行
columns 直接指定要删除的列
inplace=False,默认该删除操作不改变原数据,而是返回一个执行删除操作后的新dataframe;
inplace=True,则会直接在原数据上进行删除操作,删除后无法返回。
删除行列有两种方式:
1)labels=None,axis=0 的组合
2)index或columns直接指定要删除的行或列
>>>df = pd.DataFrame(np.arange(12).reshape(3,4), columns=['A', 'B', 'C', 'D']) >>>df A B C D 0 0 1 2 3 1 4 5 6 7 2 8 9 10 11 #Drop columns,两种方法等价 >>>df.drop(['B', 'C'], axis=1) A D 0 0 3 1 4 7 2 8 11 >>>df.drop(columns=['B', 'C']) A D 0 0 3 1 4 7 2 8 11 # 第一种方法下删除column一定要指定axis=1,否则会报错 >>> df.drop(['B', 'C']) ValueError: labels ['B' 'C'] not contained in axis #Drop rows >>>df.drop([0, 1]) A B C D 2 8 9 10 11 >>> df.drop(index=[0, 1]) A B C D 2 8 9 10 11
推荐学习《Python教程》。
网页标题:创新互联Python教程:python删掉数据表几列的方法
链接分享:http://www.shufengxianlan.com/qtweb/news45/235295.html
网站建设、网络推广公司-创新互联,是专注品牌与效果的网站制作,网络营销seo公司;服务项目有等
声明:本网站发布的内容(图片、视频和文字)以用户投稿、用户转载内容为主,如果涉及侵权请尽快告知,我们将会在第一时间删除。文章观点不代表本网站立场,如需处理请联系客服。电话:028-86922220;邮箱:631063699@qq.com。内容未经允许不得转载,或转载时需注明来源: 创新互联