在当今应用开发领域,分布式系统非常流行,给应用开发者带来了更多的格局。在不断发展的数据处理技术中,从Kafka到Redis已经成为了一种很常见的组合,它们一起构建了一个优秀的分布式数据处理框架。
创新互联公司2013年开创至今,是专业互联网技术服务公司,拥有项目成都网站建设、成都网站制作网站策划,项目实施与项目整合能力。我们以让每一个梦想脱颖而出为使命,1280元特克斯做网站,已为上家服务,为特克斯各地企业和个人服务,联系电话:028-86922220
Kafka是一种流式分布式消息中间件,它可以将数据以流的形式无缝地从一个地方发送到另一个地方。Kafka能够处理大规模的数据流,并且实时跟踪所有的数据,有效地实现数据总线的功能。 Kafka的另一个重要功能是支持实时消息订阅,使用者可以订阅Kafka的消息主题,实时收到消息更新。
Redis是一个开源的内存对象数据库,以键值对形式存储数据,其数据模型类似于字典和散列表,支持数据的持久存储,可以替代Memcached和NoSQL的作用,兼容多种操作系统和语言,能够以最快的速度处理数据读写请求,并且耗费资源最少。
因此,在从Kafka到Redis的架构中,Kafka的实时订阅功能可以通过Redis的数据库模型实现数据的持久存储,如此一来,就可以将实时消息流处理成更友好的格式,供后续流程使用。
为了演示从Kafka到Redis这种组合方式,我们可以利用第三方组件Apache Spark,它是一种用于大规模数据处理的开源框架,可以实现Kafka和Redis的集成功能,下面是一个简单的示例代码:
Object example {
def mn(args: Array[String]): Unit = {
// Create a Spark context
val sc = new SparkContext(…)
// Create a StreamingContext
val ssc = new StreamingContext( sc, … )
// Create a direct stream from Kafka
val topicMap = Map(“topic1” -> 5, “topic2” -> 3)
val stream = KafkaStream.createStream(ssc, zkServers, consumerGroup, topicMap)
// Save stream to Redis
stream.forEachRDD { rdd =>
rdd.foreachPartition { partitionOfRecords =>
val connection = RedisClient.connect(…)
partitionOfRecords.foreach (record => connection.set(record.key, record.value))
connection.close()
}
}
ssc.start()
ssc.awtTermination()
}
}
从上面的示例可以看出,利用Kafka和Redis,可以建立一个可以实时解析数据流,并将最终数据持久化保存到Redis里的应用框架,摆脱了传统的数据处理机制,以达到高可用和实时性的要求。
Kafka和Redis的结合可以更好地支持分布式应用的开发,可以灵活的应对各种数据处理的需求,使用Kafka和Redis协作,能够将实时的消息流处理功能发挥到极致。
成都创新互联科技有限公司,经过多年的不懈努力,公司现已经成为一家专业从事IT产品开发和营销公司。广泛应用于计算机网络、设计、SEO优化、关键词排名等多种行业!
分享名称:从Kafka到Redis构建分布式数据处理框架(从kafka与redis)
分享链接:http://www.shufengxianlan.com/qtweb/news8/228708.html
网站建设、网络推广公司-创新互联,是专注品牌与效果的网站制作,网络营销seo公司;服务项目有等
声明:本网站发布的内容(图片、视频和文字)以用户投稿、用户转载内容为主,如果涉及侵权请尽快告知,我们将会在第一时间删除。文章观点不代表本网站立场,如需处理请联系客服。电话:028-86922220;邮箱:631063699@qq.com。内容未经允许不得转载,或转载时需注明来源: 创新互联