嗨,朋友们,你们好!今天我想与大家来分析一下Redis过滤器,它是一种常用的持久化数据库,能够处理大规模结构化数据和大量细分数据的功能。Redis过滤器的分布图清晰地反映了它的设计原理。我们一起来探讨一下。
创新互联公司IDC提供业务:重庆服务器托管,成都服务器租用,重庆服务器托管,重庆服务器租用等四川省内主机托管与主机租用业务;数据中心含:双线机房,BGP机房,电信机房,移动机房,联通机房。
Redis过滤器,也叫字典变换过滤器,它由一个固定大小的散列表和两个指针组成,散列表的大小可以由用户自行指定,它可以支持不同数据量的物品集合。散列表负责过滤器保存的字典,其中每一项记录W1和S1,后者是一个状态值,前者代表生成字典中物品的概率,因此可以根据物品的期望出现频率对字典表进行构建和维护。
通常情况下,两个指针各自指向散列表的第一个和最后一个元素。当有新元素添加到过滤器中时,指针前移,其后的元素依次前移直至达到期望概率,此时重新开始后移元素,其前面的物品根据新引入元素的概率从新重新排序。
以上就是Redis中字典转换过滤器的分布图。从上面可以看出,构建字典和更新字典都是基于概率的,因此这一过程可以迅速完成,并且可以准确度比较高,使用简单方便。
值得一提的是,不同的物品在初始时的概率不同,在后续的更新中也可以根据实际情况进行修改,使得期望的概率最终呈现,从而达到更好的性能。
// 字典变换过滤器
dict_change_filter(I_list, n, S_list)
{
// 先将一个定长n的空散列表h和两个指针p、q初始化
h = new HashTable[n];
p = 0;
q = 0;
// 将物品集中的每一个物品计算其期望出现的频率,并分配给散列表h
for (i=0; i
// 计算物品期望出现的频率
W = I_list[i] / S_list[i];
// 将每个物品的header记录W和S,分配给散列表的元素
h[i].W = W;
h[i].S = S_list[i];
}
// 两个指针共同来完成更新和构建
while (p
// p每次移动时,将指针后面元素依次前移直至达到期望概率
for (i=p+1; i
if (h[i].W
exchange(h[i], h[p]);
// 重新开始后移元素,其前面的物品根据新引入元素的概率从新重新排序
else
p++;
}
}
// 返回过滤器
return h;
}
Redis过滤器是一种有效的高效的数据结构,它使用起来简单方便,但需要根据实际情况调整其中的物品出现频率,才能有效提升性能,让Redis更易于使用。
创新互联服务器托管拥有成都T3+级标准机房资源,具备完善的安防设施、三线及BGP网络接入带宽达10T,机柜接入千兆交换机,能够有效保证服务器托管业务安全、可靠、稳定、高效运行;创新互联专注于成都服务器托管租用十余年,得到成都等地区行业客户的一致认可。
当前文章:Redis过滤器的分布图解读(redis过滤器分布图)
网站路径:http://www.shufengxianlan.com/qtweb/news8/66708.html
网站建设、网络推广公司-创新互联,是专注品牌与效果的网站制作,网络营销seo公司;服务项目有等
声明:本网站发布的内容(图片、视频和文字)以用户投稿、用户转载内容为主,如果涉及侵权请尽快告知,我们将会在第一时间删除。文章观点不代表本网站立场,如需处理请联系客服。电话:028-86922220;邮箱:631063699@qq.com。内容未经允许不得转载,或转载时需注明来源: 创新互联