使用Dask在Python中进行并行计算

 Dask 库可以将 Python 计算扩展到多个核心甚至是多台机器。

成都创新互联公司专注于策勒网站建设服务及定制,我们拥有丰富的企业做网站经验。 热诚为您提供策勒营销型网站建设,策勒网站制作、策勒网页设计、策勒网站官网定制、微信小程序开发服务,打造策勒网络公司原创品牌,更为您提供策勒网站排名全网营销落地服务。

关于 Python 性能的一个常见抱怨是全局解释器锁(GIL)。由于 GIL,同一时刻只能有一个线程执行 Python 字节码。因此,即使在现代的多核机器上,使用线程也不会加速计算。

但当你需要并行化到多核时,你不需要放弃使用 Python:Dask 库可以将计算扩展到多个内核甚至多个机器。某些设置可以在数千台机器上配置 Dask,每台机器都有多个内核。虽然存在扩展规模的限制,但一般达不到。

虽然 Dask 有许多内置的数组操作,但举一个非内置的例子,我们可以计算偏度:

 
 
 
  1. import numpy
  2. import dask
  3. from dask import array as darray
  4.  
  5. arr = dask.from_array(numpy.array(my_data), chunks=(1000,))
  6. mean = darray.mean()
  7. stddev = darray.std(arr)
  8. unnormalized_moment = darry.mean(arr * arr * arr)
  9. ## See formula in wikipedia:
  10. skewness = ((unnormalized_moment - (3 * mean * stddev ** 2) - mean ** 3) /
  11. stddev ** 3)

请注意,每个操作将根据需要使用尽可能多的内核。这将在所有核心上并行化执行,即使在计算数十亿个元素时也是如此。

当然,并不是我们所有的操作都可由这个库并行化,有时我们需要自己实现并行性。

为此,Dask 有一个“延迟”功能:

 
 
 
  1. import dask
  2.  
  3. def is_palindrome(s):
  4. return s == s[::-1]
  5.  
  6. palindromes = [dask.delayed(is_palindrome)(s) for s in string_list]
  7. total = dask.delayed(sum)(palindromes)
  8. result = total.compute()

这将计算字符串是否是回文并返回文的数量。

虽然 Dask 是为数据科学家创建的,但它绝不仅限于数据科学。每当我们需要在 Python 中并行化任务时,我们可以使用 Dask —— 无论有没有 GIL。

新闻名称:使用Dask在Python中进行并行计算
转载注明:http://www.shufengxianlan.com/qtweb/news9/224859.html

成都网站建设公司_创新互联,为您提供网站设计公司App开发网站改版移动网站建设响应式网站网站内链

广告

声明:本网站发布的内容(图片、视频和文字)以用户投稿、用户转载内容为主,如果涉及侵权请尽快告知,我们将会在第一时间删除。文章观点不代表本网站立场,如需处理请联系客服。电话:028-86922220;邮箱:631063699@qq.com。内容未经允许不得转载,或转载时需注明来源: 创新互联